QA/Master Test Plan

From Yocto Project
(Redirected from QA Master Test Plan)
Jump to navigationJump to search

Reversion history

Version Modifier Comments
1.0 Jose Perez Carranza first draft


Introduction

The Yocto Project is an open source collaboration project that provides templates, tools and methods to help you create custom Linux-based systems for embedded products regardless of the hardware architecture. The QA team is in charge to validate some of the tools and components available as well as the images integrity and functionality across different platforms supported. In below sections more detailed information will be provided.

Objectives and Tasks

The test process is mainly focused to track and review the quality and performance of the Yocto Project, along with its reference system and internal projects. The plan also includes identifying and tracking areas subject to improvement, regression, validation of enhancements and bugs, development of testing methods with emphasis on automated testing. Documentation and licensing status is not included in the scope of the testing process, unless otherwise noted e.g. as part of the process of verifying new features.


Objectives

The Overall testing plan during Yocto Project X.X cycle aims to validate the overall enhancements that are currently in development as well as detecting regressions that might appear along.

  • Bug and feature verification
  • Running regression tests
  • Perform exploratory testing on required areas (e.g. Toaster)
  • Improve and extend overall automation

Tasks

Here is a list with all tasks identified by this testing plan.

  • General component testing
  • Bug and Feature reporting
  • Bug and Feature verification
  • Test automation
  • Exploratory testing
  • Creating testing plans for required areas
  • Review testing approaches with development peers
  • Assign QA owners on major features


Scope

This article contains an overview of the testing process, such as testing areas, types, cycles and reports, along with a summary and objective for each of the conducted validation activities. Sections may be linked to other articles that contain further details or information related to them. Note that the information provided in this article, or articles linked here, is subject to changes when needed as to reflect the actual activities held for the current version of the Yocto Project.

Testing Strategy

Test Areas

Each internal project under Yocto Project, is an area to be tested. Areas are grouped by the nature of their functionality, as follows:


Build System

The build engine and the surrounding components, that provide the means to build an image or bake a bit of software. In this area the build-time tests are executed. Currently, oe-selftest covers all #Bitbake, oe-core and #Metadata autoamted tests.

BitBake

Functional testing of BitBake, as a build engine with all its features and components against various configuration and scenarios.


Toaster

Toaster is a Web-based interface to the Bitbake build system and the Poky distribution inside the Yocto Project. This project was formely known as Web Hob / Webhob / webhob, and you may still find references to the old name in the documentation. The Toaster testing plan wiki covers all the validation performed against Toaster. The test process focuses mostly on validating the data collected from the build process and verifying the correct functionality of the Toaster GUI such as:

  • UI interface
  • Backend interaction with bitbake for build purposes
  • Backend interaction with database for storing and accessing build informations
  • The testing objective involves only positive testing for existing features on Toaster.
  • Perform exploratory testing focusing on newer features; this can sometimes generate new test cases.


Metadata

Testing the core metadata of the Yocto Project is mainly covered in the overall testing process, through other #Test Areas like #BitBake and #Toaster mentioned above. We also have specific tests covering meta-yocto in the meta-yocto test run template, which we are running regularly at Full Pass

Distro Testing

Distro Testing is intended to catch bugs that are distribution specific using the yocto-autobuilder. The tests are all run on identical hardware and with all OS-es updated. The distributions used are Fedora, Ubuntu, CentOS, OpenSuse with their latest update. If for a distribution, a beta version is available during the release, the n+1 (beta version) will be validated as well.
Refer to Distribution Test Plan for more details.


Runtime testing

Area focused on a target operating system or an application that comes with it, as the output of a build process. In this area the run-time tests are executed.

For test coverage, we are running the automated tests using Image tests.

Release CPU Class HW Platform BSP Name linux-yocto Image-type AUTO MANUAL Compliance pTest
generic BSPs (x86) Big Core MinwMax 32bit genericx86 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk Y
genericx86-wic 5.x core-image-sato-sdk WIC Y
5,x-ltsi core-image-lsb-sdk
MinwMax 64bit genericx86-64 5.x core-image-sato-sdk Y
5,x-ltsi core-image-lsb-sdk
genericx86-64-wic 5.x core-image-sato-sdk WIC Y
5,x-ltsi core-image-lsb-sdk
NUC genericx86-64 5.x core-image-sato-sdk Y Y Y
5,x-ltsi core-image-lsb-sdk Y Y
genericx86-64-wic 5.x core-image-sato-sdk WIC Y
5,x-ltsi core-image-lsb-sdk
VM QEMU qemux86 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk
5,x core-image-sato-sdk WIC Y
qemux86-64 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk
5,x core-image-sato-sdk WIC Y
generic BSPs (n-x86) MIPS EdgeRouter EdgeRouter 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk
5,x core-image-sato-sdk WIC Y
PPC MPC8315e-rdb MPC8315e-rdb 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk
5,x-ltsi core-image-sato-sdk WIC Y
ARM Beaglebone Black beaglebone 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk
5,x-ltsi core-image-sato-sdk WIC Y
VM QEMU qemuarm 5.x core-image-sato-sdk Y
5,x-ltsi core-image-lsb-sdk
qemuarm64 5.x core-image-sato-sdk Y Y
5,x-ltsi core-image-lsb-sdk
qemuppc 5.x core-image-sato-sdk Y
5,x-ltsi core-image-lsb-sdk
qemumips 5.x core-image-sato-sdk Y
5,x-ltsi core-image-lsb-sdk
qemumips64 5.x core-image-sato-sdk Y
5,x-ltsi core-image-lsb-sdk


Meta-Intel

Release CPU Class HW Platform BSP Name Image-type Auto Manual
meta-intel Big Core MinnowMax 64bit corei7-64 core-image-sato-sdk Y
core-image-lsb-sdk Y
core-image-sato-sdk WIC Y
NUC corei7-64 core-image-sato-sdk Y Y
core-image-lsb-sdk Y
core-image-sato-sdk WIC Y
CherryHill corei7-64 core-image-sato-sdk Y
core-image-lsb-sdk Y
core-image-sato-sdk WIC Y
Joule corei7-64 core-image-sato-sdk Y
core-image-lsb-sdk
core-image-sato-sdk WIC Y
MinnowMax 32bit core2-32 core-image-sato-sdk Y Y
core-image-lsb-sdk Y
core-image-sato-sdk WIC Y
meta-intel-quark 32bit intel-quark core-image-sato-sdk Y
core-image-lsb-sdk
core-image-sato-sdk WIC Y

Sanity Testing

BSP Sanity testing is performed by the public AutoBuilder, where all the BSP artifacts are built and checked if they are built correctly. On public AutoBuilder, Image tests is being run also on the QEMU images as well.

Weekly Testing

Consists in running all automated BSP tests, whihc are targeted to run on a weekly basis against the weekly build. Enabling and running the tests is described on the Image tests wiki page. The tests are available for QEMU BSPs and as well BSPs installed on real Hardware. For Coverage, please check #Runtime testing WR column


Full Pass

The full pass testing aims to run the BSP test cases which are not automated. They extend what is covered by #Weekly Testing by containing more complex scenarios like changing runlevels, or audio tests. for reference, please check #Runtime testing FP column.

Stress Testing

Stress tests are run on Beagleboard and genericx86-64 BSPs. Details as follow:

  • Beaglebone core-image-sato-sdk image is tested using LTP and Crashme stress tests
  • genericx86-64 core-image-lsb-sdk image is tested using Helltest and Crashme stress tests

System Performance (not implemented)

  • Objective
    • Track the run-time performance of targeted systems;
    • Track the run-time performance of targeted systems with gcc security flags;
  • Indicators
    • Boot time for systemd and sysvinit;
    • Image size from Buildhistory to track regression;
    • Piglit test suite results;
    • Other benchmarks that can be integrated, such as the ones listed in the openbenchmarking site.

Developer Tools

Application Development Toolkit

ADT testing includes tests for meta-toolchain-sdk and user build sdk. It will be covered in Weekly and Fullpass testing.

  • Cross-toolchain install&compiling Test
  • relocatable SDK
  • extensible SDK (eSDK)
  • toolchain tarballs
  • yocto build tree

Eclipse IDE Plugin

Eclipse plugin tests will cover the basic functionalities. This includes installation, configuring Yocto Project ADT settings, Yocto BSP, Bitbake project and project compiling and deployment to the target. Based on the features that will be implemented, new test cases will be added, to support Windows and Mac support. This will be more detailed in the Features section.

  • headless build
  • C/C++ project creation
  • debug/deploy
  • user space tools
  • Bitbake project

Depending on the new SDK features (e.g. MacOS and Windows support), additional tests will be run in order to validate the new features.


For eclipse test automation, refer to #Eclipse Testing Framework section.

Build Appliance

The basic functionality of the Build appliance will be tested. The tests consists on building successfully a build-appliance-image.

Test Cycle

Below is a generic and most common Test Cycle used, but for every Yocto Project version under test may change, detailed information can be found #Test Plans


Test execution cycle
#Sanity Test #Weekly Test #Full Pass Test (Release)
Build type Daily (M.U.T.) yes
Weekly yes yes
Release Candidate yes yes yes
Release yes yes yes
#Test Areas #Build System (oe-selftest) yes yes yes
#BitBake yes
#Toaster yes yes yes
#Metadata yes
#Runtime testing yes yes yes
#Application Development Toolkit yes yes
#Eclipse IDE Plugin yes
#Build Appliance yes
Distro Testing yes yes yes
Target machine generic BSPs (x86) yes yes yes
generic BSPs (non x86) yes yes yes
VM (x86 and non-x86) yes yes yes
Target image core-image-sato yes
core-image-sato-dev yes
core-image-sato-sdk yes yes yes
core-image-lsb-sdk yes yes
core-image-minimal yes
core-image-minimal-dev yes


Sanity Test

Brief and quick automated tests, with execution time of maximum 10 minutes.

  • Objective
    • Build finished with no errors;
    • Check basic QEMU image functionality, e.g. boot, network, package manager, etc.;
    • Establish if testing cycle can continue, depending on the build type.
    • The tests run on AB are the Image tests. Their configurations are stored in the AB config files "yocto-autobuilder/buildset-config" depending on the target image types.

Weekly Test

  • Scope
    • Images built weekly and released through the distribution team.
    • Passed #Sanity Test
  • Objective
    • Functionality test on most areas with minimum sets of tests;
    • Regression test with high probability to find bugs.

Full Pass Test

  • Scope
    • Images built as candidates for milestone or final release;
    • Passed #Weekly Test
  • Objective
    • Ensure functionality of all Yocto Project components.

Release Test

  • Objective
    • All scheduled features are covered, or rescheduled;
    • All relevant bugs are fixed and verified.
  • Coverage
    • Stress test on RC
    • Compliance test on RC
    • Distribution test on RC

Test Execution

Test execution will be done as per QA process defined in QA wiki page at https://wiki.yoctoproject.org/wiki/QA#QA_Process.

Testing tools

Autobuilder

More information can be found in the AutoBuilder wiki.

oe-selftest

Oe-selftest is a test framework used for testing the OpenEmbedded build system. Following are some key points in describing oe-selftest:

  • based on Python unittest
  • designed to simulate normal usage patterns
  • does not cover image run-time testing
  • implements a new layer that contains generic/specific metadata used only by tests

Details regarding oe-selftest implementation and usage are available on Oe-selftest wiki.

Image tests

Compliance Testing

Compliance test suites / frameworks used on genericx86-64:

  • LSB tests
  • POSIX tests
  • LTP tests

Install steps:

  1. Download lsb image from autobuilder( same image as in LSB weekly testing for genericx86-64-lsb bsp)
    • we test compliance on NUC with genericx86-64-lsb, core-image-lsb-sdk
  2. Install the image on DUT
  3. Configure the network so it be able to work externally:
    • edit /etc/resolv.conf and add the gateway ip_address
    • add the ip and netmask using "ifconfig" command
    • add the route using "route add default gw <ip_address>"
    • export the proxy using "export http_proxy=<add your proxy link>" command
    there is a bug and if you make these steps in another order than above, it may be possible not work
  4. Copy "compliance_test.py" script on DUT
  5. Make sure that your network connection is working
  6. Run the script like this:
    • make the script executable: "chmod a+x compliance_local.py"
    • run in command line the following command "./compliance_test.py <milestone> <date>"
    • wait until "Configuration done. LSB script must be started from machine." in command line( about 8-12 hours)
  7. Run "LSB_test.sh" via ssh or manually and wait for it to finish( about a day)
  8. Get the logs from DUT:
    • result-<milestone>-data.fulllog
    • result-<milestone>-data.log
    • result-<milestone>-data.fail
    • posix.log (can be found in: /opt/ltp/testcases/open_posix_testsuite)
      • the three others are found in /opt/ltp directory, in output, temp, result folders . The logs need to be sent to yi.zhao@windriver.com specifying the version and the type of image
    • in /var/opt/lsb/test/manager/results/x86.../x86....tar.gz (you can find it with auto-complete(tab) easily)
  9. Put the tests from Testopia - Runtime test run on passed


The scripts can be found here: http://git.yoctoproject.org/cgit/cgit.cgi/poky-contrib/log/?h=cagurida/compliance

pTest

Ptest (package test) is a concept for building, installing and running the test suites that the packages include for and by themselves, while producing a consistent test execution output format. More details on enabling and installing pTest are available on Ptest.

Install an run steps:

  1. Download pTest image from autobuilder( you can find core-image-sato-sdk image in pTest directory)
  2. Install the image on DUT (using legacy boot)
  3. Boot the image and copy "ptest-runner.sh" script on DUT
  4. In command line run "ptest-runner.sh > ptest.log" and wait for it to finish ( about 5 hours)

Eclipse Testing Framework

Eclipse Testing Framework uses Dogtail for test automation. Refer to eclipse-framework README on contrib for installation and framework details. Dogtail is a GUI test tool and automation framework written in Python. It uses Accessibility (a11y) technologies to communicate with desktop applications. dogtail scripts are written in Python and executed like any other Python program.

Build Performance test

The performance of the build system is tracked, with regards to time spent on passing through a build process, in multiple, commonly used, configurations.

The tool used: http://git.yoctoproject.org/cgit/cgit.cgi/poky/tree/scripts/contrib/build-perf-test.sh
For more details, refer to Performance Test wiki.
Currently, build performance results can be viewed here as chart view (starting YP 1.6) here

Automatic testing of incoming patches

[TBD] - Not Implemeted

Test Automation

  • Objectives
    • Reduce effort with manual testing, by automating current tests;
    • Improve run-time testing.
    • Improve build-time testing.


Test Automation contrib repositories

Test Schedule

For general schedule of the project go to the "Schedule" section on Test Plan of the release under test #Test Plans

Entry and Exit Criteria

In this section are defined the criteria to start and end test cycle:

Entry Criteria

  • Release candidate was published and mail with "begin QA activities" is sent.
  • Images from autobuilder are available
  • Templates of the Test Runs are ready for release candidate under test
  • Mail with dates to be used and build description was sent


Exit Criteria

  • All the components planned were 100 % completed
  • All Fail / Blocked Test cases are linked to a valid bug (not resolved nor verified)
  • If there is a major issue that blocks the component/build


Also a general criteria is defined, go to the section "Pass / Fail Criteria" in the #Test Plans of the release under test

Assumptions and Constraints

TBD

Validation

  • Objective
    • Verify the correct functionality of new changes introduced in current version of the Yocto Project.
  • Entry criteria
    • The change is tracked by filling in the "QA Owner" field for the Medium+/High enhancements
    • The change is prioritized in Bugzilla
    • Bugzilla entry has a target milestone within the current version
    • The change is documented or pointed out when no documentation is necessary (the doc flag is set accordingly)
    • Bug status is set to RESOLVED.
  • Exit criteria
    • The change is well documented for writing test case, where applicable
    • Planned test case has passed
    • Bug status is set to VERIFIED

Test Reporting

  • Objectives
    • Show a live status of the active test runs, on the latest build;
    • Send out an report email to the Yocto Project mailing list at the end of a test cycle;
    • Archive reports;
    • Use QA Status TEMPLATE for reporting;
    • Update Releases wiki after final release

For specific deliverables please check the "Test Deliverables" section on #Test Plans of the of the current release under test

Test Plans

This section is divideb by two types of Test Plans, Release and Component.

Release

Release Test Plan
3.4 Yocto_Project_3.4_Release_Test_Plan
3.3 Yocto_Project_3.3_Release_Test_Plan
3.2 Yocto_Project_3.2_Release_Test_Plan
3.1 Yocto_Project_3.1_Release_Test_Plan
2.8 Yocto_Project_2.8_Release_Test_Plan
2.7 Yocto_Project_2.7_Release_Test_Plan
2.6 Yocto_Project_2.6_Release_Test_Plan
2.5 Yocto_Project_2.5_Release_Test_Plan
2.4 Yocto_Project_2.4_Release_Test_Plan
2.3 Yocto_Project_2.3_Release_Test_Plan
2.2 Yocto_2.2_Overall_Test_Plan
2.1 Yocto_2.1_Overall_Test_Plan
1.8 Yocto_1.8_Overall_Test_Plan
1.7 Yocto_1.7_Overall_Test_Plan
1.6 Yocto_1.6_Overall_Test_Plan
1.5 Yocto_1.5_Overall_Test_Plan
1.4 Yocto_1.4_Overall_Test_Plan
1.3 Yocto_1.3_Overall_Test_Plan
1.2 Yocto_1.2_Overall_Test_Plan
1.1 Yocto_1.1_Overall_Test_Plan
1.0 Yocto_1.0_Overall_Test_Plan

Component

Component Test Plan
ADT [[]]
BSP BSP Test Plan
CROPS [[]]
Eclipse Plugin [[]]
Meta-Yocto [[]]
Toaster Toaster testing plan
eSDK Extensible SDK Test Plan (eSDK)
OE-CORE / Bitbake Oe-selftest
Distro Testing Distro Testing Plan
Runtime (Compliance) [[]]
Build Apliance [[]]

Test Executions

For historical information about the Test executions on the Yocto Project releases go to Releases

For specific information of the test executions of the current release under test go to the "Execution History" section in the most recent #Test Plans