
It’s	 not	 an	 embedded	 Linux	 distribu2on	 –	
It	 creates	 a	 custom	 one	 for	 you.	

Mark Hatle
mark.hatle@windriver.com

Wind River Systems
September, 2012

Developing Embedded Linux Devices Using the Yocto Project™

Agenda

  What is the Yocto Project (YP)?

  How does it work?

  How to get started with building OS, apps, and debugging

  What’s Next?

  Q&A

2

What is the Yocto Project?
•  A collection of embedded projects and tooling

•  Open source project with a strong community

•  Key project is the distribution build environment (Poky)

‒  Complete Linux OS with package metadata
‒  Releases every 6 months with latest (but stable) kernel (LTSI), toolchain, and

package versions

‒  Place for Industry to publish BSPs

‒  App Dev Tools which allow development against the stack, including Eclipse plug-ins
and emulators

‒  Full documentation representative of a consistent system

It’s not an embedded Linux distribution –
it creates a custom one for you

3

Why is the Yocto Project Valuable?
•  Linux is becoming increasingly popular for Embedded

•  Non-commercial and commercial embedded Linux has many distributions

(too many distributions)

•  Do It Yourself or Starting w/ a desktop/server OS:

‒  Long Term Maintenance is difficult
‒  Upstream changes are difficult to track
‒  Not embedded friendly

‒  Licensing issues
‒  No commercial Embedded support
‒  Developers spend lots of time porting or making build systems

‒  Leaves less time/money to develop interesting software features

4

Why is the Yocto Project Valuable?
•  The industry needed a common build system and core technology

‒  Bitbake build system, OpenEmbedded base

•  The benefit of doing so is:

‒  Designed for the long term
‒  Designed for embedded
‒  Transparent Upstream changes

‒  Vibrant Developer Community
‒  Less time spent on things which don’t make money (build system, core Linux

components)

‒  More time spent on things which do make money (application development,
product development, …)

5

Who is the Yocto Project?
•  Advisory Board and Technical Leadership:

•  Organized under the Linux Foundation

•  Individual Developers

•  Embedded Hardware Companies

•  Semiconductor Manufacturers

•  Embedded Operating System Vendors

•  OpenEmbedded / LTSI Community

6

Cavium Freescale Tilera
LSI Mindspeed

NetLogic Microsystems

Why Should a Developer Care?

•  Build a complete Linux system –from source– in about an hour (about 90 minutes with
X).

•  Start with a validated collection of software (toolchain, kernel, user space).

•  Access to a great collection of app developer tools (performance, debug, power
analysis, Eclipse). We distinguish app developers from system developers and we
support both.

•  Advanced kernel development tools.

•  Supports all major embedded architectures (x86, x86-64, ARM, PPC, MIPS), just
change a line in a config file and rebuild.

•  Transitions easily to a commercial embedded Linux based on the Yocto Project.

7

How Does It Work? – Quick Start
1.  Go to http://yoctoproject.org, click “documentation” and consult the Quick Start guide

2.  Set up your Linux system with the right packages (and firewall access, if needed)

3.  Click “Download” and download the latest stable release (or check out “denzil” from the
git repo)

4.  Source oe-init-build-env script

5.  Edit conf/local.conf and set MACHINE, BB_NUMBER_THREADS and
PARALLEL_MAKE

6.  Run $ bitbake core-image-sato

7.  Run $ runqemu qemux86 (if MACHINE=qemux86)

Note: File or command names in this presentation are subject to change, several are different now in master.

8

Yocto Project = Poky + Upstream + Tools

Upstream
Software
Projects

Poky

OpenEmbedded-Core

Bitbake

Yocto Documentation

Meta-Yocto

Reference BSP Metadata
(one per arch)

Embedded Kernel Tools

Reference Images

Build system upstream
components

Poky

Yocto Project components

Yocto Project

Yocto Project Output

Yocto Project provides best of upstream for a stable base

Prebuilt Build State

Software Releases

ADT Components

Swabber

Pseudo

ADT Tools (Eclipse Plugin)

9

Why not just use OpenEmbedded?

10

•  OpenEmbedded is an Open Source project focused on enabling cross-compiled
systems. It contains the build system, and meta data that describe many components
of a system.

•  Yocto Project is focused on enabling commerical developers. It does this by helping to
improve the quality of OpenEmbedded. Leveraging the build system and core
components of OpenEmbedded, and extending the support to key COTS boards.

•  Yocto Project includes autobuilder sessions

•  QA testings

•  Eclipse Plugins

•  …etc…

Yocto Project* Workflow

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

11

Configuration

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

12

Configuration

•  Configuration (*.conf) – global definition of variables

‒  build/conf/local.conf (local user-defined variables)

‒  meta-yocto/conf/distro/poky.conf (Yocto policy config
variables)

‒  meta/machine/include/tune-mips32.inc (processor
specific configuration)

‒  meta-yocto/machine/routerstationpro.conf (machine-
specific variables)

13

User
Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

User Configuration

User configuration:

•  conf/local.conf – some things to set:

‒  Set BB_NUMBER_THREADS and PARALLEL_MAKE
‒  Set MACHINE=“foo” for the CPU architecture
‒  EXTRA_IMAGE_FEATURES adds features (groups of packages)
‒  INCOMPATIBLE_LICENSE = “GPLv3” eliminates packages

 using ‘GPLv3’ and ‘LGPLv3’

14

User
Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Metadata

Metadata and patches:

•  Recipes for building packages

•  Eg, meta/recipes-core/coreutils/
coreutils_6.9.bb builds the core utilities (version 6.9)
and installs them

•  meta/recipes-core/coreutils/coreutils-6.9/
includes patches, also could include extra files to install

•  Can be extended and enhanced via “layers”

•  Compatible with OpenEmbedded

15

User
Configuration

Metadata
(.bb +

patches)
Machine BSP
Configuration

Policy
Configuration

Yocto Project Layer Requirements
•  Layers contain extensions and customizations to base system

•  Can include image customizations, additional recipes, modifying recipes, adding extra configuration

‒  Really just another directory to look for recipes or recipe extensions

‒  Added to the BBLAYERS variable in build/conf/bblayers.conf

•  Best Practice: Layers are grouped by functional components

•  Common Examples of Layers:

•  Custom Toolchains (compilers, debuggers, profiling tools, etc)

•  Distribution specifications and customizations

•  Functional areas (selinux, networking, etc)

•  OSV components

•  Project level changes

•  BSP/Machine specific components

16

Layers

17

User
Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

BSPs
BSPs and Machine configurations:

•  Configuration files to describe a machine
•  Processor/SOC tuning files
•  Formfactor configurations

•  May include Linux kernel enhancements

•  Includes board specific kernel configuration
•  Eg, meta-yocto/machine/routerstationpro.conf

describes the Routerstation Pro features, kernel filenames,
etc.

•  Machine specific package modifications

•  Should be implemented via “layers”

•  Compatible with OpenEmbedded

18

Kernel Development
•  We try to develop upstream wherever possible

•  Two major advances in the Yocto Project:

‒  Branching tools: Per-BSP git branches contain machine-specific kernel sources.
Tools collect up the relevant tree of branches

‒  Kernel features: patches and configuration fragments managed as a functional
block

•  Results:

‒  Can turn on a collection of features for a given BSP

‒  Less code duplication

‒  Easier to choose a config fragment and patches

19

Board Support Layers
•  BSP Layer - Best Practices:

•  Machine settings and recipes specific to the BSPs only

•  Based on the Yocto Project kernel versions

•  Uses the Yocto Project kernel tooling
•  Machine settings are specified in a layer's conf/machine/xxx.conf file(s)

•  Examples:

‒  Sandy Bridge + Cougar Point:

•  meta-intel/conf/meta-sugarbay/machine/sugarbay.conf
‒  Routerstation Pro (MIPS)

•  yocto/meta/conf/machine/routerstationpro.conf

20

Linux Kernel Details
Kernel Tooling

•  Kernel class

‒  meta/classes/kernel.bbclass
•  Linux-Yocto recipe

‒  meta/recipes-kernel/linux/linux-yocto*bb
•  Linux-Yocto git repository

‒  http://git.pokylinux.org/cgit/cgit.cgi/linux-yocto-*
Kernel Versions

•  linux-yocto (YP 1.2): 2.6.37, 3.0, 3.2

•  linux-yocto (in dev): 3.4

•  linux-yocto-dev: 3.5-rc4 (latest)

21

How Does It Work? More Depth

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

22

Source Fetching

•  Recipes call out location of all sources, whether on the internet or local (Look for
SRC_URI in *.bb files)

•  Bitbake can get sources from git, svn, bzr, from tarballs, and many, many more*

•  Versions of packages can be fixed or updated automatically (Add SRCREV_pn- PN =
"${AUTOREV}” to local.conf)

•  Yocto Project sources mirror available as a fallback (source reliability)
* Complete list includes: http, ftp, https, git, svn, perforce, mercurial, bzr, cvs, osc, repo, ssh, and svk and the unpacker can cope with tarballs, zip, rar, xz, gz,
bz2, and so on.

Source Materials

Upstream
Project

Releases
Local

Projects
SCMs

(optional)

Source
Fetching

23

Patching

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

24

Patching

•  Once sources are obtained, the patches are applied

•  This is a good place to patch the software yourself

•  However, we encourage you to contribute development upstream whenever possible
(we try to)

Patch
Application

25

User
Configuration

Metadata
(.bb +

patches)
Machine BSP
Configuration

Policy
Configuration

Config / Compile

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

26

Configure/Compile

•  Autoconf can be triggered automatically to ensure latest libtool is used
DESCRIPTION = "GNU Helloworld application“
SECTION = "examples"
LICENSE = "GPLv2+"

LIC_FILES_CHKSUM = "file://COPYING;md5=751419260aa954499f7abaabaa882bbe"
PR = "r0"

SRC_URI = "${GNU_MIRROR}/hello/hello-${PV}.tar.gz"

inherit autotools gettext

Configuration/
Compile

/Autoconf
as needed

27

Configure/Compile

•  Set standard environment flags (i.e. CFLAGS)
CFLAGS_prepend = "-I ${S}/include ”

•  Install task to set modes, permissions, target directories, done by “pseudo”
do_install () {

 oe_runmake install DESTDIR=${D} SBINDIR=${sbindir} MANDIR=${mandir}

Configuration/
Compile

/Autoconf
as needed

28

Packaging

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

29

Packaging

Once configure/compile/install is completed, packaging commences

The most popular package formats are supported: RPM, Debian, and ipk

•  Set PACKAGE_CLASSES in conf/local.conf

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

30

Packaging

Once configure/compile/install is completed, packaging commences

You can split into multiple packages using PACKAGES and FILES in a *.bb file:
PACKAGES =+ "sxpm cxpm"

FILES_cxpm = "${bindir}/cxpm"

FILES_sxpm = "${bindir}/sxpm"

•  Automatic splitting into debug, documentation, development and locale
data.

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

31

Image Generation

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

32

Image Generation

•  Images are constructed using the packages built earlier in
the process

•  Decision of what to install on the image is based on a
defined set of required components and automaticly
resolved dependent components

•  Uses for these images:

‒  Live Image to boot a device

‒  Root filesystem for QEMU emulator

‒  Sysroot for App development

The Yocto Project allows you customize your embedded Linux OS

Image Generation

33

Package Feeds

Images

ADT Generation

Package Feeds
User

Configuration

Metadata
(.bb + patches)

Machine BSP
Configuration

Policy
Configuration

Source Materials

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Images
Application

Development
SDK

OpenEmbedded Architecture Workflow

Source
Fetching

Patch
Application

Config /
Compile /
Autoconf
as needed

Output
Analysis for

Package
Splitting plus

Package
relationships

.rpm
generation

.deb
generation

.ipk
generation

QA
Tests

Image
Generation

SDK
Generation

Output Packages

Process steps (tasks)

Output Image Data

Upstream Source

Metadata/Inputs

Build system

34

ADT Generation

•  Cross toolchain and installation script generated.

•  This can be used to set up an application developer’s
cross development environment to create apps

•  QEMU built for target architecture emulation

35

SDK Generation

Package Feeds

Application
Development

SDK

Setting up the App Developer

System Developer

App Developer
Sysroot

(Bootable Linux
filesystem tree with

development
headers)

Package
Repository

(networked or
local) Cross toolchain

installation
(such as: /opt/poky)

Yocto Project helps set up the embedded app developer

Yocto plug-ins

Package Feeds

Images
Application

Development
SDK

Image
Generation

SDK
Generation

36

Use NFS/Local Disk, Pkg Manager

System Developer

App Developer

Package
Repository

QEMU
Device

emulator

Device under
development

Sysroot

Package Feeds

Images
Application

Development
SDK

Image
Generation

SDK
Generation

37

Use NFS/Local Disk, Pkg Manager

System Developer

App Developer

Sysroot

Package
Repository

NFS

QEMU
Device

emulator

Device under
development

Both Device and App Development Models Supported

Package
Manager

38

Hob v1

39

Hob v1

40

How to Get Started

•  Download the software today (http://www.yoctoproject.org/download)

•  Be sure you read the Quick Start to set up your system to use the Yocto Project

•  Build, test on QEMU or real hardware, develop apps

•  Join the community to get help

‒  #yocto on freenode IRC

‒  Mailing lists yocto@yoctoproject.org
‒  http://lists.yoctoproject.org/listinfo/yocto

Getting started with the Yocto Project is easy

41

Get Involved
•  The Yocto Project is a collaboration of individuals, non-profits, and corporations under

the Linux Foundation

•  We urge you or your organization to join

•  yoctoproject.org/documentation/getting-started has a number of ways to learn and
contribute

‒  Contribute code, documentation, fix bugs, provide BSPs

‒  Use YP for your embedded projects

‒  Work with the community to make YP better

Make an impact – collaboration in its purest sense

42

It’s Time to Take Action

•  It’s not an embedded Linux distribution – it creates a custom one for you

•  The Yocto Project lets you customize your embedded Linux OS

•  It helps set up the embedded app developer

•  Both device and app development models supported

•  Getting started is easy

•  Make an impact – collaboration in its purest sense

43

Q & A

Thank You!

44

Enter to Win!
Leave a business
card or fill out a

form to enter to win
an Amazon Kindle

Fire
($199 value)!

46

Additional Resources

Yocto Project:
 http://www.yoctoproject.org
OpenEmbedded:
 http://www.openembedded.org
Eclipse YouTube presentation:

 http://www.youtube.com/watch?v=3ZlOu-gLsh0
Dirk Hohndel – LinuxCon 2011:
 http://www.youtube.com/watch?v=BCxCnrcXctk 47

