
Testlink Community [configure $tlCfg->document_generator->company_name]
yocto

Yocto 1.1 M3 Fullpass Test

Test Report

Project: yocto

Author: admin

Printed by TestLink on 31/07/2011

2009 © Testlink Community

1 Test Suite : Yocto 1.1 M3 Fullpass Test

1.1 Test Suite : hob

Test Case TC-786: hob launch without error

Summary:

hob could be launched without error

Steps:

1. Prepare poky build environment
2. launch hob with command "hob"
3. Check if hob is launched correctly and no error message in console

Expected Results:

hob launched correctly and no error message

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-787: package dependency check - acl

Summary:

acl package dependency selection should be correct

Steps:

1. launch hob
2. select acl, 3 dependency packages should be shown in "image contents": acl, attr and ncurses
3. deselect acl, package acl should be removed
4. redo step 2,3 and the remaining packages in "image contents" should be consistent with the
outputs in step 3

Expected Results:

the package list should be always consistent before/after several times package select/deselect

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-788: package dependency check - avahi&acl

Summary:

avahi and acl package selection should not cause wrong package dependency

Steps:

1. launch hob
2. select avahi, a lot of dependency packages should be shown in "image contents"
3. select acl, it should be shown in "image contents" also
4. deselect avahi, acl, attr and ncurses should not be removed from "image contents"
5. deselect acl, it should be removed from "image contents"
4. redo step 2~5 and the remaining packages in "image contents" should be consistent with the
outputs in step 5

Expected Results:

Package list shown in image contents should be consistent before/after several times acl&avahi
selection/deselection

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-789: base image selection

Summary:

package list should be loaded for "image contents" for each selection in "base image" field

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"

Expected Results:

package list should be loaded for "image contents" for each selection in "base image" field

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-790: package list re-load for "base image" change

Summary:

package list should be re-loaded if changing image type for "base image"

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. change the image type for "image contents", for example, "core-image-minimal", the list of
packages should be re-loaded

Expected Results:

package list should be re-loaded if changing image type for "base image"

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-794: package list re-load for "Machine" change

Summary:

package list for "image contents" should be re-loaded and correct when "Machine" changing

Steps:

1. launch hob
2. select one "Machine", for example, qemuppc
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents"
5. select another machine type for "Machine", for example, beagleboard
6. a new list of packages should be re-loaded for "image contents" and should not same as the
outputs in step 4

Expected Results:

package list for "image contents" should be re-loaded and correct when "Machine" changing

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-913: package list re-load correct for "Machine" change

Summary:

package list re-load correct for "Machine" change

Steps:

1. launch hob
2. check the default value of "Machine", for example, qemux86, then choose a value for "base
image", for example, "core-image-sato", write down the package number for the image
3. choose another value for "Machine", for example, beagleboard and choose the same value for
"base image" as for qemux86, the pakcage number for beagleboard should not same as qemux86

Expected Results:

Different machine/image should have different package list

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-791: package list reset

Summary:

reset button should clear package list for "image contents"

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. click "reset" button, all packages should be cleared for "image contents"

Expected Results:

reset button should clear package list for "image contents"

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-792: customized package list save as bb file(add packages)

Summary:

user could use "save" or "save as" button to save customized bb file

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "File"->"Save" or "Save As", it should save the user customized package list into a bb file
7. click "reset" button, and click "File"->"Open", choose the saved bb file
8. The user customized package list should be shown

Expected Results:

user could use "save" or "save as" button to save customized bb file

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-914: customized package list save as bb file(remove packages)

Summary:

user could use "save" or "save as" button to save customized bb file

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. deselect some un-selected package, for example, zypper
6. click "File"->"Save" or "Save As", it should save the user customized package list into a bb file
7. click "reset" button, and click "File"->"Open", choose the saved bb file
8. The user customized package list should be shown

Expected Results:

user could use "save" or "save as" button to save customized bb file

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-795: cancel customized package list save action

Summary:

cancel customized package list save action should not cause any error

Steps:

1. launch hob
2. select one "Machine", for example, qemux86-64
3. select one image for "Base image", for example, "core-image-minimal"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "x" button, a dialog should pop up and ask user if customiszations wants be saved.
7. click "yes" and click "cancel" in next page
8. hob should exit without error log

Expected Results:

No error log with hob exit when cancel customized package list save action

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-796: No native package shown in package list

Summary:

There should be no native package shown in package list

Steps:

1. launch hob
2. check if there is any -native package in "Packages"

Expected Results:

There should be no native package shown in package list

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-798: stop build during image/package building

Summary:

"stop build" button should be able to stop/force stop building

Steps:

1. launch hob
2. select one "Machine", for example, qemuarm
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "bake" button to start build
7. in building page, click "stop build", and click "stop" or "force stop" to stop building

Expected Results:

"stop build" button should be able to stop/force stop building

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-799: search package name in package list

Summary:

User could search package name from "Search packages"

Steps:

1. launch hob
2. search some package via "search packages", for example, avahi
3. the searched package should be shown in "packages"

Expected Results:

User could search package name from "Search packages"

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-800: task list re-load when base image change

Summary:

task list for "package collections" should be re-loaded when base image changing

Steps:

1. launch hob
2. select one "Machine", for example, qemuppc
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. select another image type for "base image", for example, beagleboard
6. a new list of tasks should be re-loaded

Expected Results:

task list for "package collections" should be re-loaded when base image changing

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-806: user could customize threads of bitbake and make

Summary:

user could customize threads of bitbake and make in hob

Steps:

1. launch hob
2. select one "Machine", for example, qemux86
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and customize number for "bitbake threads" and "make threads", for
example, you could set both 1 for them
6. click "bake" and check 'ps' command output if there is one thread running

Expected Results:

user could customize threads of bitbake and make in hob

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-807: add layer for new target build

Summary:

user could add layer for new target build

Steps:

1. launch hob
2. click File->Add Layer, then choose one layer, for example, you could download meta-intel.git
and use sugarbay
3. check "Machine" list and sugarbay should be available
4. Meanwhile, -live image should be available in "base image", choose one type, for example, core-
image-sato-sdk
5. click "bake" and check the build result

Expected Results:

user could add layer for new target build

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-810: another build after stop build

Summary:

user could start another build after stop a build

Steps:

1. launch hob
2. select one "Machine", for example, qemuarm
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "bake" button to start build
7. in building page, click "stop build", and click "stop" to stop building
8. back to the main UI, and select another image, then click "bake" button
9. wait for the build finished and it should be no error met

Expected Results:

user could start another build after stop a build

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-917: back to main UI after back stopped

Summary:

click "back" button should bake to main UI after bake stopped

Steps:

1. launch hob
2. select one "Machine", for example, qemuarm
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "bake" button to start build
7. in building page, click "stop" or "force stop"
8. click "back" button, it should return to main UI

Expected Results:

click "back" button should bake to main UI after bake stopped

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-919: customized preference items save in local.conf

Summary:

user customized items should be saved in local.conf or hob.local.conf

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "Edit"->"Preferences", change the value of all items in this page, for example, changing
"poky" to "poky bleeding" for "distribution", selecting "GPLv3", "rpm" for "package format", "3", "4"
for "bitbake threads" and "Make threads" and enable toolchain build, setting "x86_64" for
"Toolchain host"
6. exit hob
7. check local.conf, above modifications should be set in it
8. re-launch hob and check "Preferences", all above modifications should be set in this page

Expected Results:

user customized items should be saved in local.conf or hob.local.conf

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-793: bake a image without error (base image)

Summary:

user could use hob to build a image without error

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. click "Bake" and wait for a successful build finished

Expected Results:

user could use hob to build a image without error

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-915: bake a image without error (added package)

Summary:

user could use hob to build a image without error

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "Bake" and wait for a successful build finished
7. after build finished, check if the added package built into image

Expected Results:

user could use hob to build a image without error

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-916: bake a image without error (remove packages)

Summary:

user could use hob to build a image without error

Steps:

1. launch hob
2. select one "Machine", for example, qemumips
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents"

5. deselect some un-selected package, for example, zypper
6. click "Bake" and wait for a successful build finished
7. after build finished, check if the removed package not built into package

Expected Results:

user could use hob to build a image without error

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-797: back to main UI after bake finished

Summary:

click "back" button should bake to main UI after bake finished

Steps:

1. launch hob
2. select one "Machine", for example, qemuarm
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents"
5. select some un-selected package, for example, acpid
6. click "bake" button to start build
7. in bake page, wait for build finished
8. click "back" button, it should return to main UI

Expected Results:

click "back" button should bake to main UI after bake finished

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-809: toolchain built correct with user customization

Summary:

toolchain generated correct with user selection

Steps:

1. launch hob
2. select one "Machine", for example, beagleboard
3. select one image for "Base image", for example, "core-image-sato"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and select "Build external development toolchain with image", for
"toolchain host", you could pick one and choose one arch for "toolchain host", for example, x86_64
6. click "bake" button and it should generate toolchain as well as selected packages/images
7. check the generated toolchain tarball, the name should be consistent with the above selection,
for example, x86_64 for host name, arm for beagleboard

8. use the toolchain to build a C program and make sure it workable in target

Expected Results:

toolchain generated correct with user selection

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-801: non-GPLv3 build

Summary:

non-GPLv3 build should be supported for hob

Steps:

1. launch hob
2. select one "Machine", for example, qemux86
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and select "Exclude GPLv3 packages"
6. click "bake" to build a non-GPLv3 image
7. After build is finished, check if there is any GPLv3 packages built in

Expected Results:

non-GPLv3 build should be supported for hob

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-804: distribution selection for image/package build

Summary:

user could select different distribution for "distribution"

Steps:

1. launch hob
2. select one "Machine", for example, qemux86
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and select different distribution for "distribution", for example, poky-lsb
6. click "bake" button and it should generate packages or image with selected distribution

Expected Results:

user could select different distribution for "distribution"

Test Execution Fullpass

Cycle Type:

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-802: ipk package build for image/package build

Summary:

build image with ipk package format

Steps:

1. launch hob
2. select one "Machine", for example, qemux86
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and select ipk for "package format"
6. click "bake" button and it should generate images with ipk format

Expected Results:

build image with ipk package format

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-803: deb package build for image/package build

Summary:

build image with deb package format

Steps:

1. launch hob
2. select one "Machine", for example, qemux86
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and select deb for "package format"
6. click "bake" button and it should generate images with dformat

Expected Results:

build image with deb package format

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

Test Case TC-918: rpm package build for image/package build

Summary:

build image with rpm package format

Steps:

1. launch hob
2. select one "Machine", for example, qemux86
3. select one image for "Base image", for example, "core-image-basic"
4. a list of packages should be loaded for "image contents" and you could find some tasks are
select for "package collections"
5. click Edit->Preferences, and select rpm for "package format"
6. click "bake" button and it should generate images with rpm format

Expected Results:

build image with rpm package format

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: hob

Last Result Not Run

1.2 Test Suite : System & Core OS

Test Case TC-811: zypper command installed and workable

Summary:

check if zypper is installed and can work

Steps:

1. Run command "zypper", and check the output

Expected Results:

Command "zypper" print the list of available global options and commands

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Auto

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-812: zypper help search

Summary:

check help option with zypper command

Steps:

1. Run "zypper help search" and check the output

Expected Results:

The command should print help for the search command

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Auto

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-813: zypper search package

Summary:

search package with zypper

Steps:

1. Run "zypper search package_name" and check the output, for example "zypper search avahi"

Expected Results:

The command should search package "avahi" is installed or not

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Auto

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-814: zypper remove package

Summary:

remove package with zypper

Steps:

1. Run "zypper rm pakcage_name" and check the output, for example "zypper rm avahi"

Expected Results:

The command should remove package "avahi"

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-815: zypper install package

Summary:

install package with zypper

Steps:

1. Set up a yum based repository on local server

2. Build out a package, which does not need any run-time dependency package, with local poky
tree. For example, package "man"

3. In target system, run "zypper addrepo http://ip_address_of_repository zypper_test_repo"

4. Run "zypper refresh" to refresh the zypper repository cache

5. Run "zypper install package_name" and check the output, for example "zypper install man" to
install package, which has no run-time dependency

Expected Results:

The command should install package "man"

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-816: zypper install dependency package

Summary:

install dependency package with zypper

Steps:

http://ip_address_of_repository/

1. Set up a yum based repository on local server

2. Build out a package, which does not need any run-time dependency package, with local poky
tree. For example, package "mc"

3. In target system, run "zypper addrepo http://ip_address_of_repository zypper_test_repo"

4. Run "zypper refresh" to refresh the zypper repository cache

5. Run "zypper install package_name" and check the output, for example "zypper install mc" to
install package, which needs run-time dependency packages installed also, like ncurses-terminfo.

Expected Results:

The command should install package "mc" and denpendency package ncurses-terminfo.

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-817: zypper install .all packages

Summary:

install packages from all folder with zypper

Steps:

1. Set up a yum based repository on local server
2. Build out a package, which belongs to all folder, for example, xcursor-transparent-theme-dbg-
0.1.1-r3.all.rpm.
3. In target system, run "zypper addrepo http://ip_address_of_repository zypper_test_repo"
4. Run "zypper refresh" to refresh the zypper repository cache
5. Run "zypper install xcursor-transparent-theme-dbg" and check the output

Expected Results:

package install from all folder should be installed successfully with zypper

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-818: rpm query package

http://ip_address_of_repository/
http://ip_address_of_repository/

Summary:

make sure rootfs image is built with rpm packages

Steps:

1. launch terminal

2. run command "rpm -qa", which lists all existing packages in system

Expected Results:

"rpm -qa" should print all existing packages in system

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-819: rpm install package

Summary:

rpm format package can be installed

Steps:

1. Get a RPM package(for example, avahi or powertop) from zypper repository or build one on
local machine

2. Copy the package into image, run command "rpm -ivh package_name" to install the package

Expected Results:

RPM format package can be installed

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-820: rpm install dependency package

Summary:

rpm command should report dependency when installing package

Steps:

1. Get a RPM package or build one on local machine, which should have run-time dependency. For
example, mc RPM should depends on ncurses-terminfo

2. Run "rpm -ivh package_name" and check the output, for example "rpm -ivh mc.rpm*" should
report the dependency on ncurses-terminfo

Expected Results:

rpm command should report message when some RPM installation depends on other packages

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-821: rpm remove package

Summary:

rpm command can remove package in system

Steps:

1. Launch terminal and run command "rpm -e package_name" to remove some package, for
example, avahi

Expected Results:

RPM package can be removed by command rpm

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-909: check rpm install/removal log file size

Summary:

The case is to track log file size after rpm install/removal

Steps:

1. After system is up, check the log file size after rpm/zypper install/removal
2. for rpm, there will be some database files under /var/lib/rpm/, named as "__db.xxx" and there will

be some log files under /var/lib/rpm/log, named as "log.xxxxxx". Each file will occupy about 10MB.
3. after several rpm/zypper install/removal, rpm will create several log files under /var/lib/rpm/log,
which eat lots of system disk space.

Expected Results:

there should be some method to keep rpm log in a small size

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-822: boot and install from USB

Summary:

boot and install image from usb stick

Steps:

1. plugin usb which contains live image burned
2. configure device BIOS to firstly boot from USB if necessary
3. boot the device and select some option like "Boot and Install" from boot menu
4. proceed through default install process
5. Remove USB, and reboot into new installed system.

Expected Results:

1. User can choose install system from usb stick onto harddisk from boot menu or command line
option
2. Imstalled system can boot up

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: installation&boot

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-823: live boot from USB

Summary:

live boot from USB

Steps:

boot live image from usb stick
1. plugin usb which contains live image burned
2. configure device BIOS to firstly boot from USB if necessary
3. boot the device and select some option like "boot from usb" from boot menu

Expected Results:

1. User can choose boot from live image on usb stick from boot menu or command line option
2. Live image can boot up with usb stick

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: installation&boot

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-824: boot from runlevel 3

Summary:

Verify that system can boot from runlevel 3

Steps:

1. Boot into system and edit /etc/inittab to make sure system enter init 3 by default

########

id:3:initdefault

########

2. reboot system, and press Tab to enter "grub"
3. edit "kernel" line and add "psplash=false text" at the end
4. Press "enter" to boot system

Expected Results:

system should boot to runlevel 3.

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: installation&boot

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-825: boot from runlevel 5

Summary:

Verify that system can boot from runlevel 5

Steps:

1. Boot into system and edit /etc/inittab to make sure system enter init 5 by default

########

id:5:initdefault

########

2. reboot system, and press Tab to enter "grub"
3. edit "kernel" line and make sure no "psplash=false text" in grub cmdline
4. Press "enter" to boot system

Note: The test is only for sato image.

Expected Results:

system should boot to runlevel 5.

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: installation&boot

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-826: g++ compile in sdk image

Summary:

check if g++ can compile program in sdk image

Steps:

1. Boot up sdk image
2. check if g++ is built in
3. compile following program test.c "g++ test.c -o test -lm"
4. run "test" and check the output

test.c:
##########
#include <stdio.h>
#include <math.h>

double
convert(long long l)
{
 return (double)l; // or double(l)
}

int
main(int argc, char * argv[])
{
 long long l = 10;
 double f;

 f = convert(l);
 printf("convert: %lld => %f\n", l, f);

 f = 1234.67;
 printf("floorf(%f) = %f\n", f, floorf(f));

 return 0;
}
##########

Expected Results:

executable binary test can run without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-827: gcc compile in sdk image

Summary:

check if gcc can compile program in sdk image

Steps:

1. Boot up sdk image
2. check if gcc is built in
3. compile following program test.c "gcc test.c -o test -lm"
4. run "test" and check the output

test.c:
##########
#include <stdio.h>
#include <math.h>

double
convert(long long l)
{
 return (double)l; // or double(l)
}

int
main(int argc, char * argv[])
{
 long long l = 10;
 double f;

 f = convert(l);
 printf("convert: %lld => %f\n", l, f);

 f = 1234.67;
 printf("floorf(%f) = %f\n", f, floorf(f));
 return 0;
}
##########

Expected Results:

executable binary test can run without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-828: run command make in sdk image

Summary:

check if command make can work in sdk image

Steps:

1. Boot up sdk image
2. check if make is built in
3. run command "make" with following makefile and build the test.c file from case "gcc compile in
sdk image"

test: test.o
 gcc -o test test.o -lm
test.o: test.c
 gcc -c test.c

Expected Results:

make command can work without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-829: cvs project compile in sdk image

Summary:

cvs project could be compiled in sdk image

Steps:

1. Download cvs project from http://ftp.gnu.org/non-gnu/cvs/source/feature/1.12.13/cvs-
1.12.13.tar.bz2
2. Copy cvs tarball into sdk image
3. Extract the tarball and do "configure", "make" and "make install"

Expected Results:

http://ftp.gnu.org/non-gnu/cvs/source/feature/1.12.13/cvs-1.12.13.tar.bz2
http://ftp.gnu.org/non-gnu/cvs/source/feature/1.12.13/cvs-1.12.13.tar.bz2

cvs project could be compiled successfully

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-830: iptables project compile in sdk image

Summary:

iptables project could be compiled in sdk image

Steps:

1. Download iptables project from http://netfilter.org/projects/iptables/files/iptables-1.4.11.tar.bz2

2. Copy iptables tarball into sdk image
3. Extract the tarball and do "configure", "make" and "make install"

Expected Results:

iptables could be compiled successfully

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-831: sudoku-savant project compile in sdk image

Summary:

sudoku-savant could be compiled in sdk image

Steps:

1. Download sudoku-savant project from http://downloads.sourceforge.net/project/sudoku-
savant/sudoku-savant/sudoku-savant-1.3/sudoku-savant-1.3.tar.bz2
2. Copy sudoku-savant tarball into sdk image
3. Extract the tarball and do "configure", "make"

Expected Results:

sudoku-savant could be compiled successfully

Test Execution
Cycle Type:

Weekly

http://netfilter.org/projects/iptables/files/iptables-1.4.11.tar.bz2
http://downloads.sourceforge.net/project/sudoku-savant/sudoku-savant/sudoku-savant-1.3/sudoku-savant-1.3.tar.bz2
http://downloads.sourceforge.net/project/sudoku-savant/sudoku-savant/sudoku-savant-1.3/sudoku-savant-1.3.tar.bz2

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-832: perl program work in image

Summary:

A perl program could be executed and output correctly in image

Steps:

1. Check if perl is installed in image and could run with "perl -v"
2. Prepare a perl program like followig test.pl
3. Run "perl test.pl"

########
$a = 9.01e+21 + 0.01 - 9.01e+21;
print ("the value of a is ", $a, "\n");

$a = 9.01e+21 - 9.01e+21 + 0.01;
print ("the value of a is ", $a, "\n");
########

Expected Results:

The test.pl could run without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Auto

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-833: shutdown system

Summary:

verify that system can be shutdown by command

Steps:

1. boot system
2. launch terminal and run "shutdown -h now" or "poweroff"

Expected Results:

System can be shutdown successfully

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-834: reboot system

Summary:

verify that system can boot by command

Steps:

1. boot system
2. launch terminal and run "reboot"

Expected Results:

System can reboot successfully

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-835: adjust date and time

Summary:

adjust date and time

Steps:

1.launch terminal and run "date -R" to check current system time
2.adjust Date&Time by these commands:
For date command from coreutils, for example the sdk image use coreutils, you should use
following syntax:
$ date -s "10:00:00 20100809"
$ date -R
$ Mon, 09 Aug 2010 10:00:00 +0000
For date command in busybox, for example the sato image use busybox, you should use following
syntax:
$ date "080910002010"
$ date -R
$ Mon, 09 Aug 2010 10:00:00 +0000
3. check date with "date -R" and the time shown on matchbox-panel

Expected Results:

System time should be adjust to what you specified

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Auto

Case State: Ready

Feature: system usage

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-836: switch among multi applications and desktop

Summary:

switch among multi applications and desktop

Steps:

1. launch several applications(like contacts, file manager)
2. launch terminal
3. switch among multi applications and desktop
4. close applications

Note: The case is for sato image only.

Expected Results:

1. user could switch among multi applications and desktop

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-837: vncserver for target

Summary:

Check if vncserver setup work in target and vnc client could connect it

Steps:

1. Check if x11vnc is installed in target
2. Run command "x11vnc -display :0.0", check the ip address of the target
3. On a client, run command "vncviewer $ip_address_of_target:0"

Expected Results:

A virtual X desktop of target should be pop-up on the client

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-838: file manager

Summary:

file manager

Steps:

1.launch file manager from application panel
2.view folder/file in file manager
3.copy and paste folder/file in file manager

Note: The test is only for sato image

Expected Results:

1.folder and file could be listed in file browser with different display mode

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-839: system dmesg log check

Summary:

check if there is error in dmesg after system boot up

Steps:

1. boot system and run command "dmesg"

Expected Results:

No error message in dmesg

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-840: usb mount

Summary:

verify that system can mount plugged usb automatically

Steps:

1. boot system
2. plug usb stick

Expected Results:

1. system notify that usb stick is accessible

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-841: usb read files

Summary:

verify that system can read files from usb

Steps:

1. boot system
2. plug usb stick
3. view files in usb by file browser
4.copy some files from usb to local hardware

Expected Results:

1. view/copy successfully

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-842: usb umount

Summary:

verify that system can unmout usb automically

Steps:

1. boot system
2. plug usb stick
3. view files in usb by file browser
4.unplug usb

Expected Results:

1. usb direcoty in file browser automatically missed

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-843: usb write files

Summary:

verify that system can write files to usb

Steps:

1. boot system
2. plug usb stick
3. create files in usb
4.copy some files from local hardware to usb

Expected Results:

1. create/copy successfully

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
e-menlow, blacksand, beagleboard, mpc8315e-rdb, routerstationpro,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-844: file copy by scp

Summary:

check if file can be copied from remote machine to device by scp

Steps:

1. check avahi is install and started
2. get system IP and try "scp file $IP:/home/root" from remote machine (file >= 500M for real HW,
file>=5M for QEMU)

Expected Results:

File can be copied from remote machine to device by scp

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Auto

Case State: Ready

Feature: connectivity

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-845: connman launch after boot

Summary:

After system booted, the connmand daemon should be launched

Steps:

1. boot system
2. "ps |grep connmand"
3. check if there is a thread named connmand in background

Expected Results:

There should be one thread named connmand in background

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: connectivity

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-846: ethernet enabled in connman

Summary:

After system boot, ethernet can get IP address with connman

Steps:

1. boot system with network cable plugged in
2. "ps |grep connmand" if connmand is started
3. "ifconfig" check ethernet could get IP address and ping the address from remote machine

Expected Results:

Ethernet interface can get IP via connman

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: connectivity

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-847: only one connmand in background

Summary:

there should be no more than one connmand in background

Steps:

1. boot system
2. "ps |grep connmand"
3. the connmand should be in background
4. run command "connmand"
5. check if the second connmand can be generated

Expected Results:

There will be only one connmand instance in background

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: connectivity

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-848: remote access by ssh

Summary:

check if the device can be accessed remotely by ssh

Steps:

1. check avahi is install and started
2. get system IP and try "ssh $IP" from remote machine

Expected Results:

it is ok to access system by ssh from remote machine

Test Execution
Cycle Type:

Sanity

Case Automation Auto

Type:

Case State: Ready

Feature: connectivity

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, mpc8315e-rdb, routerstationpro, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-849: ethernet static ip set in connman

Summary:

we could set static ip for ethernet in connman

Steps:

1. launch connman-properities

2. choose ethernet device and set static ip for it. For example, in our internal network, we can set
as following:

ip address: 10.239.48.xxx

Broadcast: 10.239.48.255

Mask: 255.255.255.0

Expected Results:

we can set static ip for ethernet device

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: connectivity

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-850: ethernet get IP in connman via DHCP

Summary:

ethernet device can get IP in connman via DHCP

Steps:

1. Set static IP for ethernet device in connman
2. Check if ethernet device can work with static IP
3. Choose DHCP method for ethernet device
4. Check with ping if ethernet device get IP address via DHCP

Expected Results:

Ethernet device can get dynamic IP address via DHCP in connman

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: connectivity

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-851: connman offline mode in connman-gnome

Summary:

change offline mode in comman-gnome can make all connection off

Steps:

1. Launch connman-properties after system booting

2. choose "offline mode" and check the connection of all network interfaces

Expected Results:

All connection should be off after clicking "offline mode"

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: connectivity

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-852: X server can start up with runlevel 5 boot

Summary:

check if X server can work well after system runlevel 5 booting

Steps:

1. boot up system with default runlevel

Expected Results:

X server can start up well and desktop display has no problem

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Auto

Case State: Ready

Feature: graphics

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
beagleboard, crownbay, sugarbay, jasperforest

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-853: qt application quicky

Summary:

quicky is a simple note-taking application with Wiki-style syntax and behaviour

Steps:

launch quicky and write something in quicky

Expected Results:

http://qt-apps.org/content/show.php/Quicky?content=80325

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: graphics

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay, jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-854: standby

Summary:

system can enter standby and resume from standby

Steps:

1. boot system and launch terminal; check output of "date" and launch script "continue.sh"
2. echo "mem" > /sys/power/state
3. After system go into S3 mode, move mouse or press any key to make it resume
4. Check "date" and script "continue.sh"
5. Check if application in X can work as normal

continue.sh as below:

#################
#!/bin/sh

i=1
while [0]
do
 echo $i
 sleep 1
 i=$((i+1))
done
#################

Expected Results:

screen should resume back and script can run continuously

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

http://qt-apps.org/content/show.php/Quicky?content=80325

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-907: check CPU utilization after standby

Summary:

check CPU utilization after standby

Steps:

1. Start up system
2. run "top" command and check if there is any process eating CPU time
3. make system into standby and resume it
4. run "top" command and check if there is any difference with the data before standby

Expected Results:

There should be no big difference before/after standby with "top"

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: crownbay, sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-855: Test if LAN device works well after resume from suspend state

Summary:

Test if LAN device works well after resume from suspend state.

Steps:

1. boot system and launch terminal
2. echo "mem" > /sys/power/state
3. After system go into S3 mode, move mouse or press any key to make it resume
4. check ping status

Expected Results:

ping should always work before/after standby

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-856: Test if usb hid device works well after resume from suspend state

Summary:

Test if usb hid device works well after resume from suspend state.

Steps:

1. boot system and launch terminal
2. echo "mem" > /sys/power/state
3. After system go into S3 mode, move mouse or press any key to make it resume
4. check usb mouse and keyboard

Expected Results:

usb mouse and keyboard should work

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: e-menlow, blacksand, crownbay, sugarbay, jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-895: disk space check

Summary:

There should be enough disk space for QEMU rootfs

Steps:

1. Launch QEMU targets(with rootfs.ext3 file)
2. Check the output of command df
3. If there is less than 5M disk space available, we assume it a failure

Expected Results:

There should be enough disk space for QEMU targets

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-896: click terminal icon on X desktop

Summary:

terminal icon should work without problem on X desktop

Steps:

1. After system launch and X start up, click terminal icon on desktop

2. Check if only one terminal window launched and no other problem met

Expected Results:

there should be no problem after launching terminal

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
beagleboard, crownbay, sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-897: Add multiple files in music player

Summary:

music player should be no problem when adding multiple files at same time

Steps:

1. Launch music player
2. Add multiple files(5 files) in music player at same time

Expected Results:

music player should be OK with this action

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-898: system shutdown with UNFS

Summary:

system shutdown with UNFS should work

Steps:

1. Use UNFS to start QEMU targets
2. Run shutdown in QEMU targets

Expected Results:

QEMU shutdown with UNFS should work

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target: qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-899: no connman-gnome icon on desktop

Summary:

there should be no connman-gnome icon on desktop

Steps:

1. Launch sato image
2. There should be no connman-gnome icon on desktop, and connman-properties should be only
invoked by toolbar

Expected Results:

There should be no connman-gnome icon on desktop, and connman-properties should be only
invoked by toolbar

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
beagleboard, crownbay, sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-900: application contacts should work

Summary:

application contacts should work without problem

Steps:

1. Make sure X is started up
2. Check if there is "contacts" icon on desktop and run it
3. Check if there is any error by checking the output of this action and dmesg log

Expected Results:

"contacts" launch should not cause any error

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
beagleboard, crownbay, sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-902: x11vnc icon click for target

Summary:

Check if vncserver could work in target by clicking x11vnc icon

Steps:

1. Check if there is a x11vnc icon in target
2. Click the x11vnc icon and check the ip address of the target
3. On a client, run command "vncviewer $ip_address_of_target:0"

Expected Results:

A virtual X desktop of target should be pop-up on the client

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemumips, e-menlow, blacksand,
crownbay, sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-908: RTLDLIST path check for ldd command

Summary:

check if the file set in RTLDLIST is valid

Steps:

1. After system is up, check if the RTLDLIST variable in ldd command
2. The file path set in RTLDLIST should be valid

Expected Results:

check if the file set in RTLDLIST is valid

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato-sdk

Last Result Not Run

Test Case TC-910: check bash in image

Summary:

check if bash exists in image

Steps:

1. After system is up, check if bash command exists

Expected Results:

bash command should exist in image

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target:
qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips, e-menlow,
blacksand, beagleboard, mpc8315e-rdb, routerstationpro, crownbay, sugarbay,
jasperforest

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-911: "Install/Remove Software" icon should work

Summary:

"Install/Remove Software" icon should work

Steps:

1. After system is up, check if "Install/Remove Software" icon could work

Expected Results:

"Install/Remove Software" icon should work

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: system usage

target: qemux86_32, qemux86_64, qemuarm, qemumips

image profile: sato, sato-sdk

Last Result Not Run

1.3 Test Suite : ADT

Test Case TC-857: gcc from ADT toolchain can build c program

Summary:

gcc from ADT toolchain can build c program and run with qemu-${ARCH} command or in target
image

Steps:

1. Install toolchain tarball and setup cross compile environment
2. compile following program test.c "${CC} test.c -o test -cc -lm"
3. run "test" with qemu-${ARCH} or run it into corresponding target image and check the output

Note: Currently, only i586_i586, x86-64_x86-64 and i586_$X(x is mips, arm and ppc) toolchain
tarballs are covered in testing.

#########
#include <stdio.h>
#include <math.h>

double
convert(long long l)
{
 return (double)l; // or double(l)
}

int
main(int argc, char * argv[])
{
 long long l = 10;
 double f;

 f = convert(l);
 printf("convert: %lld => %f\n", l, f);

 f = 1234.67;
 printf("floorf(%f) = %f\n", f, floorf(f));
 return 0;
}
#########

Expected Results:

executable binary test can run without problem

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Auto

Case State: Ready

Feature: sdk

target: build_system

image profile:

Last Result Not Run

Test Case TC-858: g++ from ADT toolchain can build c program

Summary:

g++ from ADT toolchain can build c program and run with qemu-${ARCH} command or in target
image

Steps:

1. Install toolchain tarball and setup cross compile environment
2. compile following program test.c "${CXX} test.c -o test -cc++ -lm"
3. run "test" with qemu-${ARCH} or run it in corresponding target image and check the output

Note: Currently, only i586_i586, x86-64_x86-64 and i586_$X(x is mips, arm and ppc) toolchain

tarballs are covered in testing.

#########
#include <stdio.h>
#include <math.h>

double
convert(long long l)
{
 return (double)l; // or double(l)
}

int
main(int argc, char * argv[])
{
 long long l = 10;
 double f;

 f = convert(l);
 printf("convert: %lld => %f\n", l, f);

 f = 1234.67;
 printf("floorf(%f) = %f\n", f, floorf(f));
 return 0;
}
#########

Expected Results:

executable binary test can run without problem

Test Execution
Cycle Type:

Sanity

Case Automation
Type:

Auto

Case State: Ready

Feature: sdk

target: build_system

image profile:

Last Result Not Run

Test Case TC-859: ADT toolchain could build cvs project

Summary:

ADT toolchain could build cvs project

Steps:

1. Install toolchain tarball and setup cross compile environment
2. Download cvs project, http://ftp.gnu.org/non-gnu/cvs/source/feature/1.12.13/cvs-1.12.13.tar.bz2
3. With the cross compile environment, run "./configure ${CONFIGURE_FLAGS}", "make", "make
install DESTDIR=/opt/tmp"

Note: Currently, only i586_i586, x86-64_x86-64 and i586_$X(x is mips, arm and ppc) toolchain
tarballs are covered in testing.

Expected Results:

cvs project could be compiled successfully with ADT toolchain

Test Execution
Cycle Type:

Weekly

http://ftp.gnu.org/non-gnu/cvs/source/feature/1.12.13/cvs-1.12.13.tar.bz2

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target: build_system

image profile: lsb-sdk

Last Result Not Run

Test Case TC-860: ADT toolchain could build iptables project

Summary:

iptables project could be compiled with ADT toolchain

Steps:

1. Install toolchain tarball and setup cross compile environment
2. Download iptables project, http://netfilter.org/projects/iptables/files/iptables-1.4.11.tar.bz2
3. With the cross compile environment, run "./configure ${CONFIGURE_FLAGS}", "make", "make
install DESTDIR=/opt/tmp"

Note: Currently, only i586_i586, x86-64_x86-64 and i586_$X(x is mips, arm and ppc) toolchain
tarballs are covered in testing.

Expected Results:

iptables could be compiled successfully

Test Execution Cycle Type: Weekly

Case Automation Type: Manual

Case State: Ready

Feature: sdk

target: build_system

image profile: lsb-sdk

Last Result Not Run

Test Case TC-861: ADT toolchain could build sudoku-savant project

Summary:

sudoku-savant could be compiled with ADT toolchain

Steps:

1. Install toolchain tarball and setup cross compile environment
2. Download sudoku-savant project, http://downloads.sourceforge.net/project/sudoku-
savant/sudoku-savant/sudoku-savant-1.3/sudoku-savant-1.3.tar.bz2
3. With the cross compile environment, run "./configure ${CONFIGURE_FLAGS}", "make", "make
install DESTDIR=/opt/tmp"

Note: Currently, only i586_i586, x86-64_x86-64 and i586_$X(x is mips, arm and ppc) toolchain
tarballs are covered in testing.

Expected Results:

sudoku-savant could be compiled successfully

Test Execution Cycle
Type:

Weekly

http://netfilter.org/projects/iptables/files/iptables-1.4.11.tar.bz2
http://downloads.sourceforge.net/project/sudoku-savant/sudoku-savant/sudoku-savant-1.3/sudoku-savant-1.3.tar.bz2
http://downloads.sourceforge.net/project/sudoku-savant/sudoku-savant/sudoku-savant-1.3/sudoku-savant-1.3.tar.bz2

Case Automation Type: Manual

Case State: Ready

Feature: sdk

target: build_system

image profile: lsb-sdk

Last Result Not Run

Test Case TC-862: unfs support for qemu target

Summary:

Check if unfs works for qemu target

Steps:

1. Prepare a *rootfs.tar.bz2 image
2. Prepare a folder under poky directory as <rootfs-dir>, for example poky/temp
3. Run command "runqemu-extract-sdk *rootfs.tar.bz2 poky/temp"
4. Run command "runqemu nfs <kernel> <rootfs-dir>"

Expected Results:

QEMU target should be started with unfs

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: sdk

target: qemux86_32, qemux86_64, qemuarm, qemuppc, qemumips

image profile: sato, sato-sdk, lsb-sdk

Last Result Not Run

1.4 Test Suite : Stress

Test Case TC-863: crashme for stress

Summary:

Run crashme in real hardware for stress testing

Steps:

1. Get crashme from http://people.delphiforums.com/gjc/crashme.html
2. By following the setup steps on above URL, build crashme in target.
3. Run crashme for 24 hours

Expected Results:

target should not crash with the program

Test Execution Cycle
Type:

Fullpass

Case Automation Type: Manual

http://people.delphiforums.com/gjc/crashme.html

Case State: Ready

Feature: stress

target: beagleboard, jasperforest

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-864: helltest for stress

Summary:

Run helltest for stress in target

Steps:

1. helltest is stress test suite, which does compiler test for hours
2. We download the test suite and run it for 24 hours

Expected Results:

helltest should not make target crash

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: stress

target: jasperforest

image profile: lsb-sdk

Last Result Not Run

Test Case TC-912: ltp for stress

Summary:

 Run ltp stress in real hardware for stress testing

Steps:

LTP download: http://sourceforge.net/projects/ltp/files/LTP%20Source/ltp-20101031/ltp-full-
20101031.bz2/download
build steps: refer to http://ltp.sourceforge.net

Run steps:
1. Build LTP with toolchain or in sdk image
2. Copy LTP folder into target, for example, /opt/ltp. Modify script "testscripts/ltpstress.sh", set
“Iostat=1”, ”NO_NETWORK=1”
3. cd testscripts/ && ./ltpstress.sh
4. This stress case will run for 24 hours

Expected Results:

Check the result, target should not crash with the program.

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: stress

http://sourceforge.net/projects/ltp/files/LTP%20Source/ltp-20101031/ltp-full
http://ltp.sourceforge.net/

target: beagleboard

image profile: sato-sdk

Last Result Not Run

1.5 Test Suite : Power/Performance

Test Case TC-865: boot time collection

Summary:

To collect boot time of clean installation, from grub to full desktop

Steps:

1. Reboot testing device at least 3 times and do not plug anything while collecting boot time by
stopwatcher:

#reboot

Expected Results:

Provide average boot time and dmesg log

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: performance

target: crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-866: memory footprint

Summary:

collect data of the used/free memory

Steps:

With default installtion, launch terminal and type 'free' to read the used/free disk space

Expected Results:

Provide 'free' output

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: core

target: crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-867: powertop log

Summary:

collect powertop data

Steps:

1. Run "powertop -d" and record output

2. Save the percentage of deepest C state(C3 or C2)

Expected Results:

Provide powertop output

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: core

target: crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-868: Idle power consumption

Summary:

Collect idle power consumption of target system

Steps:

1. Use power meter to collect ilde power consumption of target system for 10 minutes

2. Save it and compare it with old data

Expected Results:

There should be no regression between old and new ilde power data

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: performance

target: crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-869: core build time for sato image

Summary:

collect the core build time for sato qemux86 image

Steps:

1. Perpare a system with following configuration
CPU: 4-core * 2-threads Intel(R) Core(TM) i7 CPU 860 @ 2.80GHz
Memory: 4GB
Harddisk: 1TB

OS: Ubuntu 10.04 x86_64
Kernel: 2.6.32-21

2. Download poky tree and make sure all the source packages have been downloaded
3. Build a qemux86 sato image and collect the time

Expected Results:

There should be no regression for build time

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: performance

target: qemux86_32

image profile: sato

Last Result Not Run

1.6 Test Suite : Graphics

Test Case TC-870: Graphics ABAT

Summary:

Yocto on SugarBay should pass Intel graphics ABAT testing

Steps:

1. Download ABAT test suite from internal git repository, git clone
git://tinderbox.sh.intel.com/git/abat
2. Apply following patch to make it work on yocto environment
3. Run "./abat.sh" to run ABAT test

########
diff --git a/glxgears_check.sh b/glxgears_check.sh
index 17622b8..c4d3b97 100755
--- a/glxgears_check.sh
+++ b/glxgears_check.sh
@@ -31,7 +31,7 @@ else

 sleep 6

- XPID=$(ps ax | awk '{print $1, $5}' | grep glxgears | awk '{print $1}')
+ XPID=$(ps | awk '{print $1, $5}' | grep glxgears | awk '{print $1}')
 if [! -z "$XPID"]; then
 kill -9 $XPID >/dev/null 2>&1
 echo "glxgears can run, PASS!"

diff --git a/x_close.sh b/x_close.sh
index e287be1..3429f1a 100755
--- a/x_close.sh
+++ b/x_close.sh
@@ -22,7 +22,7 @@
 #
 function close_proc(){
 echo "kill process Xorg"
-XPID=$(ps ax | awk '{print $1, $5}' | egrep "X$|Xorg$" | awk '{print $1}')
+XPID=$(ps | awk '{print $1, $6}' | egrep "X$|Xorg$" | awk '{print $1}')
 if [! -z "$XPID"]; then
 kill $XPID
 sleep 4
diff --git a/x_start.sh b/x_start.sh
index 9cf6eab..2305796 100755
--- a/x_start.sh
+++ b/x_start.sh
@@ -24,7 +24,7 @@
 X_ERROR=0

 #test whether X has started
-PXID=$(ps ax |awk '{print $1,$5}' |egrep "Xorg$|X$" |grep -v grep | awk '{print $1}')
+PXID=$(ps |awk '{print $1,$6}' |egrep "Xorg$|X$" |grep -v grep | awk '{print $1}')
 if [! -z "$PXID"]; then
 echo "[WARNING] Xorg has started!"
 XORG_STATUS="started"
@@ -35,9 +35,11 @@ else
 #start up the x server
 echo "Start up the X server for test in display $DISPLAY................"

- $XORG_DIR/bin/X >/dev/null 2>&1 &
+ #$XORG_DIR/bin/X >/dev/null 2>&1 &
+ #sleep 8
+ #xterm &
+ /etc/init.d/xserver-nodm start &
 sleep 8
- xterm &
 fi
 XLOG_FILE=/var/log/Xorg.0.log
 [-f $XORG_DIR/var/log/Xorg.0.log] && XLOG_FILE=$XORG_DIR/var/log/Xorg.0.log
@@ -54,7 +56,7 @@ fi
 X_ERROR=1
 fi

- XPID=$(ps ax | awk '{print $1, $5}' | egrep "X$|Xorg$" |grep -v grep| awk '{print $1}')
+ XPID=$(ps | awk '{print $1, $6}' | egrep "X$|Xorg$" |grep -v grep| awk '{print $1}')
 if [-z "$XPID"]; then
 echo "Start up X server FAIL!"
 echo
########

Expected Results:

All ABAT test should pass

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: e-menlow, blacksand, crownbay, sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-871: openarena - 3D

Summary:

Run opernarena testing and compare the result with upstream graphics result

Steps:

1. Download and build openarena through phoronix test suite. first download a new phoronix from
its website, then download the game in it. The openarena we use is v0.8.5.

phoronix-test-suite list-tests
phoronix-test-suite install openarena

2. Run the test suite with following command

vblank_mode=0 openarena +exec pts +set r_mode -1 +set r_fullscreen 1 +set r_customWidth
$VIDEO_WIDTH +set r_customHeight $VIDEO_HEIGHT

The VIDEO_WIDTH and VIDEO_HEIGHT set the game's resolution，you can get current

resolution by command "xrandr"

Expected Results:

Compare the result of Yocto with upstream graphics

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-872: urbanterror - 3D

Summary:

Run urbanterror and compare the result of Yocto with upstream graphics

Steps:

1. download and build: This game also can get through phoronix-test-suite. 2. we should set some
environments as following before test:

OS_TYPE=Linux
OS_ARCH=`uname -i`
LOG_FILE=${LOGNOW_DIR}/${LOG_FILE}

3. Run urbanterror with following command

vblank_mode=0 ./urbanterror +timedemo 1 +set demodone 'quit' +set demoloop1 'demo pts1; set
nextdemo vstr demodone' +vstr demoloop1 +set r_customwidth $VIDEO_WIDTH +set
r_customheight $VIDEO_HEIGHT

Expected Results:

Get the FPS data of Yocto and compare it with upstream graphics

Test Execution Cycle
Type:

Weekly

Case Automation Manual

Type:

Case State: Ready

Feature: bsp

target: sugarbay

image profile: sato, sato-sdk

Last Result Not Run

Test Case TC-873: x11perf - 2D

Summary:

Get fps data of x11per running

Steps:

1. Run "x11perf -aa10text" and "x11perf -rgb10text"
2. Get the FPS result and compare it with upstream graphics data on Sandybridge

Expected Results:

There should not be big regression between Yocto and upstream linux

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: sugarbay

image profile: sato, sato-sdk

Last Result Not Run

1.7 Test Suite : Mulitimedia

Test Case TC-874: sound on/off

Summary:

check if sound can be turned on/off

Steps:

1. copy amixer is installed
2. Run "amixer set Master on" to turn on audio device
3. Run "amixer set Master 64" to adjust to maxium volumn
4. Run "amixer set Speaker on" to turn on speaker
5. Run "amixer set Speaker 64" to adjust to maxium volumn
6. Run "amixer set Master off" to turn off audio device
7. Run "amixer set Speaker off" to turn off speaker

Expected Results:

Above commands can run without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-875: audio play (mp3)

Summary:

make sure music player cannot play mp3 format file

Steps:

1. copy sample mp3 file to system
2. launch music player and make sure it cannot play the mp3 file

Expected Results:

mp3 file can not be played

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-876: audio play (ogg)

Summary:

check if music player can play ogg format file

Steps:

1. copy sample ogg file to system
2. launch music player can play the ogg file

Expected Results:

ogg file can be played without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-877: audio stop (ogg)

Summary:

check if music player can play ogg format file

Steps:

1. copy sample ogg file to system
2. launch music player can play the ogg file
3. click "stop" button to stop playing
4. click "start" button to resume playing

Expected Results:

ogg file can be start/stop without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-878: audio play (wav)

Summary:

check if music player can play wav format file

Steps:

1. copy sample wav file to system
2. launch music player can play the wav file

Expected Results:

wav file can be played without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-879: audio stop (wav)

Summary:

check if music player can stop playing with wav format file

Steps:

1. copy sample wav file to system
2. launch music player can play the wav file

3. click "stop" button to stop playing
4. click "start" button to resume playing

Expected Results:

wav file can be start/stop without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-880: video play (mpeg)

Summary:

make sure video player cannot play mpeg format file

Steps:

1. copy sample mpeg file to system
2. launch video player and make sure it cannot play the mpeg file

Expected Results:

mpeg file cannot be played

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-881: video play (ogg)

Summary:

check if video player can play ogg format file

Steps:

1. copy sample ogg file to system
2. launch video player can play the ogg file

Expected Results:

ogg file can be played without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

Test Case TC-882: video stop (ogg)

Summary:

check if video player can play ogg format file

Steps:

1. copy sample ogg file to system
2. launch video player can play the ogg file
3. click "stop" button to stop playing
4. click "start" button to resume playing

Expected Results:

ogg file can be start/stop without problem

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: multi-media

target: e-menlow, blacksand, beagleboard, crownbay, sugarbay

image profile: sato-sdk

Last Result Not Run

1.8 Test Suite : Compliance

Test Case TC-883: LTP subset test suite

Summary:

LTP subset test suite

Steps:

For real hardware, run following component,
syscalls
fs
fsx
dio
io
mm
ipc
sched
math
nptl
pty
admin_tools

timers
commands

For QEMU, run following component
syscalls
mm
ipc
sched
math
nptl
pty
admin_tools
commands

Run Instructions:
LTP download: http://sourceforge.net/projects/ltp/files/LTP%20Source/ltp-20110606/ltp-full-
20110606.bz2/download

build steps: refer to http://ltp.sourceforge.net

Run steps:
1. Build LTP with toolchain or in sdk image
2. For QEMU, create the qemu target with "-m 512", which makes some memory stress cases
pass. For some issues, we could only set 128M for qemuarm and 256M for qemumips.
3. Copy LTP folder into target, for example, /opt/ltp. Modify script "runltp", remove test suites not to
be tested
4. Comment runtests/sched: hackbench, which is not suitable to run in emulators
5. Prepare a tmp folder under your ltp folder, for example, create a tmp folder under your ltp folder,
like /opt/ltp/tmp
6. ./runltp -p -l result-M2-20101218.log -C result-M2-20101218.fail -d /opt/ltp/tmp &> result-M2-
20101218.fulllog
 (assume you mount your LTP disk at /opt and create your own tmp dir at /opt/ltp/tmp)

Expected Results:

Check the result on wiki, https://wiki.yoctoproject.org/wiki/LTP_result, there should be no
regression failure met.

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Semi-Auto

Case State: Ready

Feature: core

target:
qemuarm, qemuppc, qemumips, blacksand, beagleboard, mpc8315e-rdb,
routerstationpro, sugarbay

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-884: POSIX subset test suite

Summary:

Run subset test suite of POSIX test suite

Steps:

POSIX test suite download: http://sourceforge.net/projects/posixtest/files/posixtest/posixtestsuite-
1.5.2/posixtestsuite-1.5.2.tar.gz/download
build: refer to http://posixtest.sourceforge.net/

Run steps:
1. Get POSIX test suite as above
2. Start target and copy test suite into it

http://sourceforge.net/projects/ltp/files/LTP%20Source/ltp-20110606/ltp-full-20110606.bz2/download
http://sourceforge.net/projects/ltp/files/LTP%20Source/ltp-20110606/ltp-full-20110606.bz2/download
http://ltp.sourceforge.net/
https://wiki.yoctoproject.org/wiki/LTP_result
http://sourceforge.net/projects/posixtest/files/posixtest/posixtestsuite-1.5.2/posixtestsuite-1.5.2.tar.gz/download
http://sourceforge.net/projects/posixtest/files/posixtest/posixtestsuite-1.5.2/posixtestsuite-1.5.2.tar.gz/download
http://posixtest.sourceforge.net/

3. For qemu, option "-m 512" should be added
4. Make sure below is uncommented from LDFLAGS file:
#-D_XOPEN_SOURCE=600 –lpthread –lrt –lm

5. For gcc 4.6, you need to add "-Wno-unused-but-set-variable -Wno-address" to CFLAGS in
Makefile
6. Run following commands under POSIX test suite
run_tests SIG
run_tests SEM
run_tests THR
run_tests TMR
run_tests MSG
run_tests TPS
run_tests MEM

Expected Results:

Compare the test result on wiki, https://wiki.yoctoproject.org/wiki/Posix_result, there should be no
more regression failures met.

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Semi-Auto

Case State: Ready

Feature: core

target:
qemuarm, qemuppc, qemumips, blacksand, beagleboard, mpc8315e-rdb,
routerstationpro, sugarbay

image profile: sato-sdk, lsb-sdk

Last Result Not Run

Test Case TC-885: LSB subset test suite

Summary:

Run LSB subset test suite in target

Steps:

1. Get LSB image and start the image(if it is QEMU) with option "-m 512M"
2. Get the LSB test suite or run script creat-lsb-image under poky source directory "scripts/creat-
lsb-image"
3. Setup environment for lsb image in target with script LSB_Setup.sh, it could be found under poky
source directory "/meta/recipes-extended/lsb/lsbsetup/LSB_Setup.sh"
4. Select LSB test items in LSB web interface and run them

Expected Results:

Check the result on wiki,
https://wiki.pokylinux.org/wiki/index.php?title=LSB_result&action=edit&redlink=1. No regression
failures should be met.

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: core

target: blacksand, mpc8315e-rdb, sugarbay

image profile: lsb-sdk

Last Result Not Run

https://wiki.yoctoproject.org/wiki/Posix_result
https://wiki.pokylinux.org/wiki/index.php?title=LSB_result&action=edit&redlink=1

1.9 Test Suite : Core Build System

Test Case TC-894: Init scripts

Summary:

Provide an image/recipe skeleton as a canonical example. Check if can be

built and run correctly

Steps:

1. Build image from poky source, check if skeleton script and
skeleton-test can be built into the image

a. download poky source

b. modify the line IMAGE_FEATURES += "apps-console-core
${SATO_IMAGE_FEATURES}" to IMAGE_FEATURES += "apps-
console-core ${SATO_IMAGE_FEATURES}} service" in
meta/recipes-sato/images/core-image-sato.bb (for sato image) or
core-image-sato-sdk.bb (for sato-sdk image)

c. $ source oe-init-build-env

add line “<POKY_BASE>/meta-skeleton \” to conf/bblayer.conf

d. build the image

e. boot up the image, check the skeleton and skeleton-test should be
in right place

/etc/init.d/skeleton

/usr/sbin/skeleton-test

2. Verify the basic function of skeleton. Check if skeleton script can
start/stop the skeleton-test daemon.

Expected Results:

Init scripts can be built and run correctly

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-920: Minimal image

Summary:

 Check if the minimal image can be built and run correctly.

Steps:

1. Build a minimal image from poky source by following the wiki:
https://wiki.yoctoproject.org/wiki/Minimal_Image
2. Check the size of the image. It should take less than 5M disk space after extraction.
3. Verify the basic function of the image. Run “busybox –list” to get the commands list. Check if
these commands can run correctly.

Expected Results:

The minimal image can be built and run correctly.

Test Execution Cycle Type: Fullpass

Case Automation Type: Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-921: Share gcc work directories

Summary:

This feature make gcc use the shared source directory during the different building. Check if this
feature can work for gcc 4.5.1 and gcc 4.6.0.

Steps:

1. Download the poky source and set build environment.

2. For gcc 4.5.1, add 2 lines to conf/local.conf :
 GCCVERSION ?= "4.5.1"
 SDKGCCVERSION ?= "4.5.1"
 For gcc 4.6.1, there is no need to add these 2 lines to conf/local.conf

3. Run bitbake command as below:
 bitbake gcc-cross
 bitbake gcc-cross gcc-cross-initial gcc-cross-intermediate -c clean
 bitbake gcc-crosssdk
 bitbake gcc-runtime
 bitbake libgcc
 bitbake gcc-cross-canadian-arm (for arm arch)
 bitbake gcc-cross-canadian-powerpc (for ppc arch)
 bitbake gcc-cross-canadian-mips (for mips arch)

4. Run "bitbake core-image-minimal", "bitbake core-image-sato", "bitbake core-image-sato-sdk" to
build images. Verify the basic function of the images.

Expected Results:

After step3, you can check the tmp/work-shared/gcc-4.6.0 or tmp/work-shared/gcc-4.5.1 should in
the build directory. Check the time of build process and the disk space usage of tmp/work-
shared/gcc-version sub-directory.
The images should be built and can work correctly.

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

https://wiki.yoctoproject.org/wiki/Minimal_Image

target: build_system

Last Result Not Run

Test Case TC-922: ccache as native tool

Summary:

ccache - a fast C/C++ compiler cache.

Steps:

1. Make sure the native ccache is not installed on local machine and compile 'less' bbfile without
native ccache support.
 bitbake ccache-native -c clean
 bitbake less -c clean
 bitbake less -c compile
Check the compile log under .../tmp/work/mips-poky-linux/less-443-r0/temp/log.do_compile

2. Build native tool 'ccache'
 bitbake ccache-native
Check the ccache-native installed location ..tmp/sysroots/x86_64-linux/usr/bin/ccache

3. Compile less bbfile again with native ccache support
 bitbake less -c clean
 bitbake less -c compile
Check the compile with ccache log under .../tmp/work/mips-poky-linux/less-443-
r0/temp/log.do_compile. The native ccache should be used when compiled.

Expected Results:

The ccache-native should be built successfully and be installed to the correct location.
The ccache-navive will be used when compile file.

Test Execution Cycle
Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-923: PAM support

Summary:

Check the Yocto should support PAM (Pluggable Authentication Module)

Steps:

1. Build a sato-sdk image from poky source with PAM support by following the wiki:
https://wiki.yoctoproject.org/wiki/PAM_Integration
2. Refer to https://wiki.yoctoproject.org/wiki/PAM_Integration , check the commands 'dropbear',
'login', 'passwd', 'useradd', 'su' can work correctly with PAM support and verify the function of PAM.

Expected Results:

The commands which have PAM support should run correctly and the function of PAM should work
without problems.

Test Execution Cycle Type: Fullpass

Case Automation Type: Manual

https://wiki.yoctoproject.org/wiki/PAM_Integration
https://wiki.yoctoproject.org/wiki/PAM_Integration

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-886: kernel interactive targets

Summary:

Check if yocto can support kernel interactive target build

Steps:

1. download yocto source tree
2. prepare yocto build environment
3. Run "bitbake linux-yocto -c menuconfig"
4. Check if a new bash terminal pop up and menuconfig can be triggered

Expected Results:

menuconfig for kernel can be triggered with yocto build command

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-887: KVM enabled with qemu

Summary:

qemu can be started with KVM enabled

Steps:

1. build a kernel with KVM enabled
2. Start qemu with option "kvm" with runqemu
3. Check if qemu starts up and if kvm_intel is used
4. If kvm_intel is not used when starting qemu, it will shows 0 in "Used by" column when you run
"lsmod | grep kvm_intel"

Expected Results:

KVM enabled with qemu

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-888: non-GPLv3 build check

Summary:

Check if non-GPLv3 build could pass and it does not has any GPLv3 packages installed

Steps:

1. Set following sentences in local.conf to GPLv3

INCOMPATIBLE_LICENSE = "GPLv3"

2. Build core-image-minimal and core-image-basic
3. Start up target after build is finished
4. Run following script to check if any GPLv3 packages installed

##################
#!/bin/sh

temp=`mktemp`
rpm -qa > $temp
ret=0

for i in `cat $temp`
do
 rpm -qi $i | grep License | grep -i gplv3 > /dev/null 2>&1
 if [$? -eq 0]; then
 license=`rpm -qi $i | grep License | awk -F"License:" '{print
$2}'`
 echo "package $i has inconsistent license: $license"
 ret=1
 fi
done

rm -rf $temp
exit $ret
###################

Expected Results:

non-GPLv3 build pass and no GPLv3 packages installed in the image

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-889: yocto build in Fedora 15

Summary:

Build latest yocto in x86_64 Fedora 15 host

Steps:

1. By following the yocto handbook, download latest yocto source
2. Build core-image-minimal on Fedora 15

Expected Results:

Yocto build should pass on Fedora 15

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-890: yocto build in OpenSuse 11.4

Summary:

Build latest yocto in x86_64 OpenSuse 11.4

Steps:

1. By following the yocto handbook, download latest yocto source
2. Build core-image-minimal on OpenSuse 11.4

Expected Results:

Build should pass on OpenSuse 11.3

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-891: yocto build in Ubuntu 11.04

Summary:

Build latest yocto in x86_64 Ubuntu 11.04

Steps:

1. By following the yocto handbook, download latest yocto source
2. Build core-image-minimal on Utuntu 11.04

Expected Results:

Yocto build should pass on Utuntu 10.04

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-892: yocto build in KVM

Summary:

Build yocto in KVM should work

Steps:

1. Setup a VM environment with KVM enabled, for example, RHEL6
2. Prepare a VM for yocto build testing, for example, OpenSuse 11.3
3. By following the yocto handbook, download latest yocto source into the VM
4. Build core-image-minimal in the VM

Expected Results:

Yocto build in VM should work same as in real host

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-893: sstate work on local host

Summary:

Check if sstate could work with local cache

Steps:

1. Follow the wiki steps to setup a sstate cache on local machine,
https://wiki.yoctoproject.org/wiki/Enable_sstate_cache
2. Prepare another yocto source directory and set the SSTATE_DIR the cache you setup in step 1)
3. Run poky build, for example, "bitbake core-image-minimal". You should note following things if
sstate works:

########
NOTE: Preparing runqueue
NOTE: Executing SetScene Tasks
NOTE: Running setscene task 118 of 155 (virtual:native:/home/lulianhao/poky-
build/edwin/poky/meta/recipes-devtools/pseudo/pseudo_git.bb:do_populate_sysroot_setscene)
NOTE: Running setscene task 119 of 155 (/home/lulianhao/poky-build/edwin/poky/meta/recipes-
devtools/quilt/quilt-native_0.48.bb:do_populate_sysroot_setscene
########

Expected Results:

sstate should work and reduce build time

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

https://wiki.yoctoproject.org/wiki/Enable_sstate_cache

Case State: Ready

Feature: poky

target: build_system

image profile:

Last Result Not Run

Test Case TC-901: gcc set to 4.5.1 for core build

Summary:

gcc related options should be set to 4.5.1 for 4.5.1 build

Steps:

1. Download poky source and prepare the build environment
2. Set GCCVERSION and SDKGCCVERSION to 4.5.1 in meta/conf/distro/include/tcmode-
default.inc
3. Run "bitbake -s | grep gcc" and check the output, all gcc related options should be set to 4.5.1

Expected Results:

all gcc related options should be set to 4.5.1

Test Execution Cycle
Type:

Fullpass

Case Automation Type: Manual

Case State: Ready

Feature: poky

target:

image profile:

Last Result Not Run

Test Case TC-924: btrfs format image build

Summary:

btrfs format image could be built out

Steps:

1. set IMAGE_FSTYPES = "btrfs" in local.conf
2. build a core-image-minimal image, the image should be btrfs format

Expected Results:

btrfs format image could be built out

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-925: lib64-zlib lib32-zlib build

Summary:

lib64-zlib lib32-zlib build should pass with multilib enabled

Steps:

1. Prepare poky build environment
2. by following https://wiki.pokylinux.org/wiki/Multilib, set local.conf to enable multilib build
3. build lib64-zlib and lib32-zlib, which should build pass without error

Expected Results:

lib64-zlib lib32-zlib build should pass with multilib enabled

Test Execution Cycle
Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-926: lib32 sato-sdk image build

Summary:

lib32 sato-sdk image could be built out with multilib support

Steps:

1. Prepare poky build environment
2. by following https://wiki.pokylinux.org/wiki/Multilib, set local.conf to enable multilib build
3. with rpm set for package format, build lib32 core-sato-sdk image
4. after build finished, start up the image and you should find a lib32 folder

Expected Results:

lib32 sato-sdk image could be built out with multilib support

Test Execution Cycle
Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-927: lib32 lsb-sdk image build

Summary:

lib32 lsd-sdk image should be built out with multilib support

Steps:

1. Prepare poky build environment
2. by following https://wiki.pokylinux.org/wiki/Multilib, set local.conf to enable multilib build
3. with rpm set for package format, build lib32 core-lsb-sdk image
4. after build finished, start up the image and you should find a lib32 folder

Expected Results:

https://wiki.pokylinux.org/wiki/Multilib
https://wiki.pokylinux.org/wiki/Multilib
https://wiki.pokylinux.org/wiki/Multilib

lib32 lsd-sdk image should be built out with multilib support

Test Execution Cycle
Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-928: lib64 sato-sdk image build

Summary:

lib64 sato-sdk image should be built out with multilib support

Steps:

1. Prepare poky build environment
2. by following https://wiki.pokylinux.org/wiki/Multilib, set local.conf to enable multilib build
3. with rpm set for package format, build lib64 core-lsb-sdk image
4. after build finished, start up the image and you should find a lib64 folder

Expected Results:

lib64 sato-sdk image should be built out with multilib support

Test Execution Cycle
Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-929: lib64 lib32 build for ipk

Summary:

lib64 lib32 build should work with ipk format

Steps:

1. Prepare poky build environment
2. by following https://wiki.pokylinux.org/wiki/Multilib, set local.conf to enable multilib build
3. with ipk set for package format, build lib32 and lib64 core-sato-sdk image
4. after build finished, start up the image and you should find a lib32 or lib64 folder according to the
image name, and ipk format is used for packages

Expected Results:

lib64 lib32 build should work with ipk format

Test Execution Cycle
Type:

Fullpass

Case Automation Type: Manual

Case State: Ready

Feature: poky

https://wiki.pokylinux.org/wiki/Multilib
https://wiki.pokylinux.org/wiki/Multilib

target: build_system

Last Result Not Run

Test Case TC-930: lib64 lib32 build for deb

Summary:

lib64 lib32 build should work with deb format

Steps:

1. Prepare poky build environment
2. by following https://wiki.pokylinux.org/wiki/Multilib, set local.conf to enable multilib build
3. with deb set for package format, build lib32 and lib64 core-sato-sdk image
4. after build finished, start up the image and you should find a lib32 or lib64 folder according to the
image name, and deb format is used for packages

Expected Results:

lib64 lib32 build should work with deb format

Test Execution Cycle
Type:

Fullpass

Case Automation Type: Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-931: bitbake-layers show_layers

Summary:

show_layers could show current layers

Steps:

1. prepare poky build environment
2. add meta-rt into bblayer.conf
3. run "bitbake-layers show_layers", it should show the layers defined in bblayer.conf

Expected Results:

show_layers could show current layers

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-932: bitbake-layers show_overlayed

Summary:

overlayed recipes should be shown with bitbake-layers

https://wiki.pokylinux.org/wiki/Multilib

Steps:

1. prepare poky build environment
2. copy a recipe from meta layer into meta-yocto, for example,
/home/jxu49/osel/poky/meta/recipes-graphics/clutter/clutter-1.6_1.6.14.bb
3. run "bitbake-layers show_overlayed", it should report clutter is overlayed by meta-yocto

Expected Results:

overlayed recipes should be shown with bitbake-layers

Test Execution Cycle
Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-933: bitbake-layers show_appends

Summary:

bitbake-layers show_appends should list bbappend files and recipe files they apply to

Steps:

1. prepare poky build environment
2. run "bitbake-layers show_appends", it should list bbappend files and recipe files they apply to

Expected Results:

bitbake-layers show_appends should list bbappend files and recipe files they apply to

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

Test Case TC-934: bitbake-layers flatten

Summary:

bitbake-layers flattens layer configuration into a separate output directory

Steps:

1. prepare poky build environment
2. create a folder, for example, test
3. run "bitbake-layers flatten test", all contents of all layers should be moved into the test folder,
with any bbappends appended to corresponding recipes
4. check if bbappends take effect, for example, check if test/recipes-
bsp/formfactor/formfactor_0.0.bb has the code defined in meta-yocto/recipes-
bsp/formfactor/formfactor_0.0.bbappend

Expected Results:

bitbake-layers flattens layer configuration into a separate output directory

Test Execution
Cycle Type:

Fullpass

Case Automation
Type:

Manual

Case State: Ready

Feature: poky

target: build_system

Last Result Not Run

1.10 Test Suite : BSP specific

Test Case TC-903: RTC

Summary:

Check if RTC(Real Time Clock) can work correctly

Steps:

1. Read time from RTC registers.

root@localhost:/root> hwclock -r

Sun Mar 22 04:05:47 1970 -0.001948 seconds

2. Set system current time

root@localhost:/root> date 062309452008

3. Synchronize the system current time to RTC registers

root@localhost:/root> hwclock -w

4. Read time from RTC registers

root@localhost:/root> hwclock -r

5. Reboot target and read time from RTC again.

Expected Results:

Can read and set the time successful

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: beagleboard, mpc8315e-rdb

image profile: sato-sdk

Last Result Not Run

Test Case TC-904: Watchdog

Summary:

Check if watchdog can reset the target system

Steps:

1. Check if watchdog device exist in /dev/ directory

2. Run command “echo 1 > /dev/watchdog” and wait for 60s. Then the target

will reboot.

Expected Results:

The watchdog device exist in /dev/ directory and can reboot the target.

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: beagleboard, routerstationpro

image profile: sato-sdk

Last Result Not Run

Test Case TC-905: SATA

Summary:

Test general use of SATA device on target, like mount, umount, read and

write.

Steps:

1. Run “fdisk” command to create partition on SATA disk.

2. Mount/Umount

mke2fs /dev/sda1

mount -t ext2 /dev/sda1 /mnt/disk

umount /mnt/disk

3. Read/Write (filesystem)

touch /mnt/disk/test.txt

echo “abcd” > /mnt/disk/test.txt

cat /mnt/disk/test.txt

4. Read/Write (raw)

dd if=/dev/sda1 of=/tmp/test bs=1k count=1k

This command will read 1MB from /dev/sda1 to /tmp/test

Expected Results:

The SATA device can mount, umount, read and write

Test Execution
Cycle Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: mpc8315e-rdb

image profile: sato-sdk

Last Result Not Run

Test Case TC-906: I2C/EEPROM

Summary:

Check if target can support EEPROM

Steps:

1. Check eeprom device exist in /sys/bus/i2c/devices/

2. Run "hexdump eeprom" command

root@mpc8315e-rdb:/sys/bus/i2c/devices/1-0051> hexdump eeprom

0000000 9210 0b02 0211 0009 0b52 0108 0c00 3c00

0000010 6978 6930 6911 208c 7003 3c3c 00f0 8381

Expected Results:

Hexdump can read data from eeprom

Test Execution Cycle
Type:

Weekly

Case Automation
Type:

Manual

Case State: Ready

Feature: bsp

target: mpc8315e-rdb

image profile: sato-sdk

Last Result Not Run

