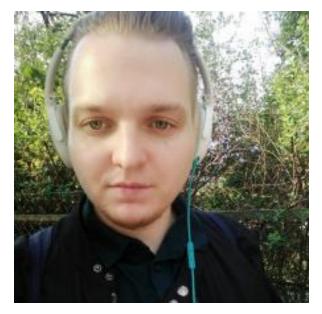


Bringing IOTA Distributed Ledger Technology (DLT) into Yocto/OpenEmbedded

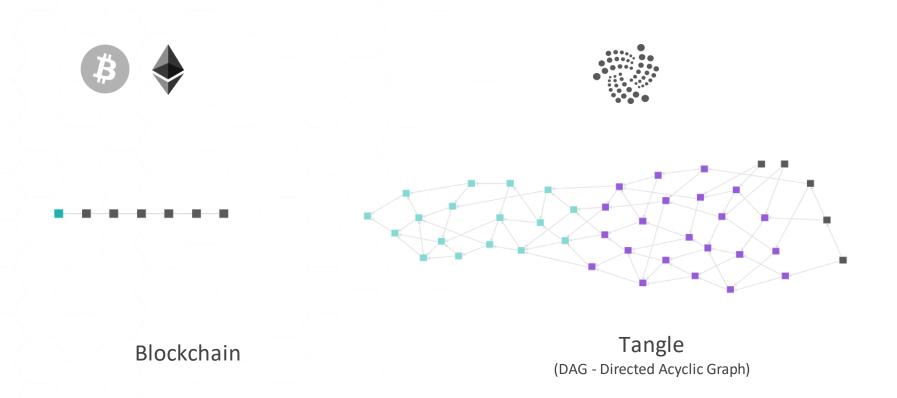

Bernardo A. Rodrigues Philipp Blum (IOTA Foundation)

Presenters

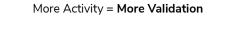
- Bernardo A. Rodrigues
- meta-iota Maintainer
- bernardoaraujor@gmail.com

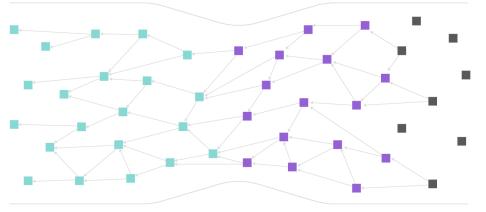
- Philipp Blum
- Developer Advocate (IOTA Foundation)
- philipp.blum@iota.org

Table of Contents


- What is IOTA?
- IOTA Nodes
- meta-iota
- IOTA Ecosystem Development Fund

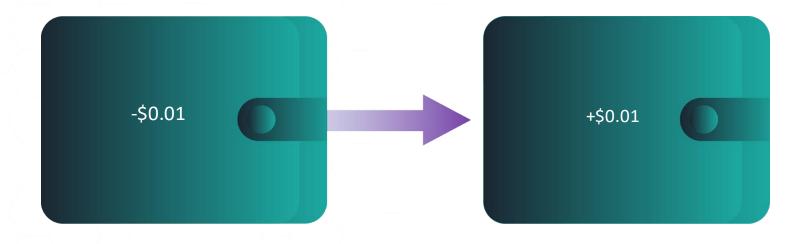
What is IOTA?


Context


Yocto Project | The Linux Foundation

Distributed Ledger Technologies

Tangle (DAG)

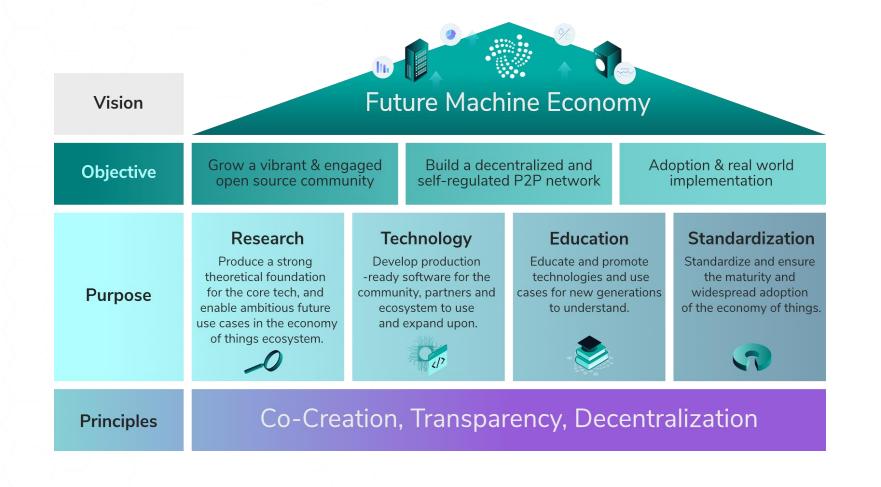


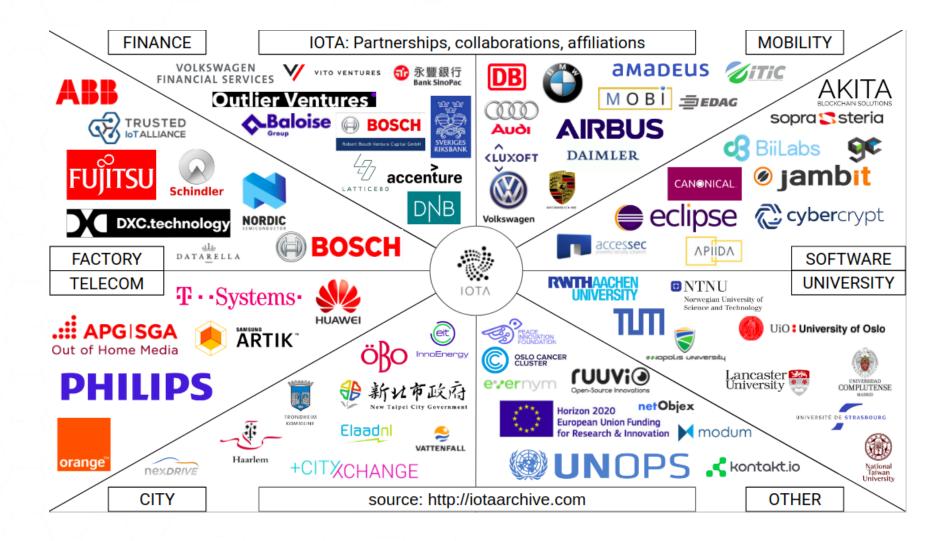
Each Vertex represents a transaction (squares)

Each Edge represents na approval (lines)

Zero Fee Transactions

No mining = No fees = Zero fee micro-transactions


IOTA Foundation


- Non-Profit Foundation registered in Berlin
- ~100 employees in 17 countries
- Funded through donations from IOTA Token holders, Research Grants and Project-based corporate financial support

IOTA Foundation

FOUNDATION

IOTA Foundation: Collaborations & Partnerships

IOTA Nodes

Pre Coordicide vs Post Coordicide

IOTA Nodes

- DLT Node:
 - transaction relay
 - ledger copy

IOTA Nodes

- Ethereum, Bitcoin, etc: Nodes on the Cloud (
 hw resources)
- IOTA: Nodes on the Edge (\downarrow hw resources)

https://blog.iota.org/towards-open-collaboration-1926e94514b8

Coordicide

- To make it possible for the network to grow and protect it against certain attacks, IOTA currently relies on a coordinator.
- The coordinator checkpoints valid transactions, which are then validated by the entire network.
- The coordinator is being run by the IOTA Foundation.
- Removing the Coordinator from the IOTA network will realize a long sought after goal in the field of DLT: scalability without centralization.
- Coordicide: the death of the Coordinator.

Pre Coordicide vs Post Coordicide

- Pre-Coordicide Node implementation:
 - IRI (Java)
 - cIRI (C)
- Coordicide Proof of Concept Node implementation:
 - GoShimmer (Go)
- Post-Coordicide Node implementation:
 - Bee (Rust)
 - Hornet (Go)

Since Coordicide is still a topic under R&D, meta-iota focuses on Pre Coordicide (for the moment).

meta-iota

Recipes

Yocto Project | The Linux Foundation

cIRI

- low level implementation of an IOTA node in C
- Users to become part of the IOTA network:
 - transaction relay
 - network information provider
- JSON-REST HTTP interface
- Suited for Embedded (SoC, SoM):
 - RAM: down to ~140MB RAM for solid node, ~500MB while syncing

- IF development team chose Bazel as build system for cIRI
- I borrowed the Bazel recipe and bbclass from metatensorflow
- Plans to switch to CMake

ciri_0.1.0.bb

 <u>https://github.com/bernardoaraujor/meta-</u> iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb

Let's ping the cIRI node on the BBB

\$ curl <u>http://104.155.135.221:14265/</u>\ -X POST \ -H 'Content-Type: application/json' \ -H 'X-IOTA-API-Version: 1' \ -d '{"command": "getNodeInfo"}'

CClient

- IOTA client library implementation in C.
- Recipe exports libcclient.a into the target rootfs/sysroot.
- CMake support
- Patch CMakeLists.txt to avoid the ExternalProject_add feature of CMake
- Recipe for c-iota-workshop repository as an example of how to integrate with libcolient

libcclient_1.0.0.bb

- <u>https://github.com/bernardoaraujor/meta-</u> iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb
- <u>https://github.com/bernardoaraujor/meta-</u> iota/blob/master/recipes-iota/cclient/c-iotaworkshop_git.bb

Playing around with c-iota-workshop

- Install Bazel: <u>https://docs.bazel.build/versions/master/install.html</u>
- Clone repo:
 \$ git clone https://github.com/iota-community/c-iota-workshop
- Run an example: \$ cd c-iota-workshop \$ bazel run -c opt examples:[EXAMPLE NAME]
 - Following examples are available:

hello_world send_hello receive_hello generate_address check_balances send_tokens

iota.go

- IOTA Go API Library allows:
 - Create transactions
 - Sign transactions
 - Interact with an IRI node
- Recipe written, although more testing is needed for validation.
- Recipe lists all golang package dependencies explicitly.
- Recipe for go-iota-workshop repository as an example of how to integrate with iota.go library

iota.go_1.0.0.bb

- <u>https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb</u>
- <u>https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb</u>

Playing around with go-iota-workshop

- Install Golang (1.10+) <u>https://golang.org/doc/install</u>
- Clone repo and download dependencies:
 \$ git clone <u>https://github.com/iota-community/go-iota-workshop</u>
 \$ cd go-iota-workshop; go mod download
- Run an example:
 \$ go run iota_go_[EXAMPLE_NAME]/main.go
- Following examples are available:
 - helloworld send_data receive_data create_address check_balance

send_tx	
receive	_tx
zmq	

iota.lib.py / PyOTA

- Official Python library for the IOTA Core.
- Implements both the official API, as well as signing, bundles, utilities and conversion.
- Python 3.6, 3.5 and 2.7.
- inherit setuptools
- Integration is planned for the near future
- https://github.com/iotaledger/iota.lib.py

Playing around with python-iota-workshop

- Install Python 3 and PIP <u>https://www.python.org/downloads/</u> <u>https://pip.pypa.io/en/stable/installing/</u>
- Clone repo and donwload dependencies:
 \$ git clone <u>https://github.com/iota-community/python-iota-workshop</u>
 \$ cd python-iota-workshop; pip install -r requirements.txt
- Run an example:
 \$ python code/[EXAMPLE_NAME].py
- Following examples are available: e01_hello_world.py e04_generate_address.py e07_send_data.py e02_send_hello.py e05_check_balance.py e08_receive_data.py e03_receive_hello.py e06_send_tokens.py e09_zmq_listen.py

IOTA CLI App

- Command Line wallet and node management tool.
- It is implemented in nodejs, and it's available as a npm package.
- To be integrated with the help of devtool npm functionality.
- Integration planned for the near future.
- <u>https://github.com/iotaledger/cli-app</u>
- <u>https://wiki.yoctoproject.org/wiki/TipsAndTricks/NPM</u>

recipes-support

- In order to fulfill dependencies, I had to write a few support recipes.
 - nanopb_0.3.9.3.bb: small code-size Protocol Buffers implementation in ansi C. Especially suitable for use in microcontrollers, but fits any memory restricted system
 - keccak_git.bb: keccak sponge function family including SHA3 implementation. Recipe needs improvement to support more architectures)
 - logger_4.0.0.bb: simple logging facility for the C language)
 - **libzmq_4.3.2.bb**: ZeroMQ core engine in C++
- Extra contribution to the OE community.

Future of meta-iota (2020-21)

- Bee
 - Post Coordicide Reference Implementation
 - Official IOTA Foundation
 - Rust (meta-rust and meta-rust-bin?)
- Hornet
 - Post Coordicide Implementation
 - Community based (EDF)
 - Go

Ecosystem Development Fund

Boards for Proof-of-Concept

IOTA Ecosystem Development Fund

- The IOTA EDF will allow me to validate Proof-of-Concepts on a few different boards with potential for IOTA Industrial applications.
- There is a big interest for FPGA projects in the IOTA Community. This is due to the Quorum Based computations, as well as accelerated Proof-of-Work (PoW), Address Generation and Signing.

Board	Manufacturer	Comment	OpenEmbedded BSP Layer
STM32MP157C-DK2	STMicroelectronics	The discovery SBC for STMicroelectronics STM32MP1 Series microprocessors	<u>meta-st-stm32mp</u>
Colibri iMX6 Solo SoM + Viola Carrier	Toradex	Toradex is a swiss manufacturer of Industrial- grade System on Modules.	meta-freescale-3rdparty
Zynq-7000 SoC ZC702 Evaluation Kit	Xilinx	The Zynq-7000 is a SoC+FPGA with great potential to accelerate PoW, Mini-PoW, Address Generation and Signing, as well as future Qubic implementations.	<u>meta-xilinx</u>

IOTA Ecosystem Development Fund

Board	Manufacturer	Comment	OpenEmbedded BSP Layer
DE10-Nano Development Kit	Terasic Technologies	The E10-Nano Development Kit is built around the Intel/Altera CycloneV SoC+FPGA. Also great potential to accelerate PoW, Mini- PoW, Address Generation and Signing, as well as future Qubic implementations.	<u>meta-de10-nano</u> <u>meta-altera</u>
BeagleBone Black	Texas Instruments	The most popular SBC in the Yocto Community.	<u>meta-yocto-bsp</u> <u>meta-ti</u> <u>meta-beagleboard</u> <u>meta-bbb</u>
DragonBoard 410c	96Boards	SBC with a Qualcomm Snapdragon 400	<u>meta-qcom</u>
Orange Pi Zero	Orange Pi	Popular small SBC with an AllWinner H2 chip.	<u>meta-sunxi</u> <u>meta-allwinner-hx</u>
Raspberry Pi Zero W	Raspberry Pi Foundation	Miniature version of the RPi, with Wireless support.	<u>meta-raspberrypi</u>

Thank you!

