Kernel Modules with eSDKs
Marco Cavallini

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Overview

 The Extensible SDK (eSDK) is a portable and
standalone development environment , basically an
SDK with an added bitbake executive via devtool.

 The “devtool” is a collection of tools to help
development, in particular user space development.

 We can use devtool to manage a new kernel module:

« Like normal applications is possible to import and create a
wrapper recipe to manage the kernel module with eSDKs.

Kernel modules with eSDKs —
Compiling a kernel module

« We have two choices

« Qut of the kernel tree

 When the code is in a different directory outside of the
kernel source tree

 |Inside the kernel tree

 When the code is managed by a KConfig and a Makefile
Into a kernel directory

Kernel modules with eSDKs —
Pro and Cons of a module outside the kernel tree

When the code is outside of the kernel source tree in
a different directory

Advantages

—- Might be easier to handle modifications than modify it into
the kernel itself

Drawbacks

— Not integrated to the kernel configuration/compilation
process

- Needs to be built separately
— The driver cannot be built statically

Kernel modules with eSDKs —
Pro and Cons of a module inside the kernel tree

When the code is inside the same directory tree of
the kernel sources

Advantages

- Well integrated into the kernel configuration and
compilation process

— The driver can be built statically if needed

Drawbacks
—- Bigger kernel size

— Slower boot time

Kernel modules with eSDKs — The source code

#include <linux/module.h>
#include <linux/kernel.h>

static int __ init hello init(void)

{
printk ("When half way through the journey of our life\n");
return O;

static void _ exit hello exit(void)
{
printk ("I found that I was in a gloomy wood\n") ;

module init(hello init);
module exit (hello exit);

MODULE LICENSE ("GPL") ;
MODULE DESCRIPTION ("Greeting module from the Divine Comedy") ;
MODULE_AUTHOR("Dante Alighieri");

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — The Makefile

obj-m += hellokernel.o
SRC := $(shell pwd)

all:
$ (MAKE) -C $ (KERNEL SRC) M=$ (SRC) modules

modules install:
$ (MAKE) -C $(KERNEL SRC) M=$ (SRC) modules install

« KERNEL_SRC is the location of the kernel sources.
« This variable is set to the value of the STAGING_KERNEL_DIR

within the module class (module.bbclass)

Sources available on https://github.com/koansoftware/simplest-kernel-module.git

Kernel modules with eSDKs — Devtool setup

- Start a new Shell! Otherwise, the existing bitbake environment can cause
unexpected results

« Here is how the eSDK was prepared for this class account:

< DO NOT ENTER THE FOLLOWING COMMANDS : ALREADY EXECUTED >

$ bitbake core-image-base -c populate sdk ext

$ cd /scratch/working/build- qemuarm/tmp/deploy/sdk/

$./poky-glibc-x86 64-core-image-base-armv5e-toolchain-ext-2.4.sh \
-d /scratch/sdk/gemuarm -y

$ cd /scratch/sdk/gemuarm

$. environment-setup-armv5e-poky-linux-gnueabi

$ devtool modify virtual/kernel

$

e This installed the eSDK into:

/scratch/sdk/gemuarm

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Overview

« Starting from now we are using the eSDK and not the project

« During this exercise we using two different machines
« The HOST containing the eSDK (providing devtool)
« The TARGET running the final gemuarm image

Host Target

eSDK:~$ root@gemuarm:~$

9 Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Globalsetup

« Open two terminal windows and setup the eSDK environment in each
one

$ cd /scratch/sdk/gemuarm

$ bash # safe shell
$ source environment-setup-armv5e-poky-linux-gnueabi

SDK environment now set up;

additionally you may now run devtool to perform development tasks.
Run devtool --help for further details.
$

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — build the target image

« After you have setup the eSDK environment, build an image

$ devtool build-image

« This will create a new image into.

/scratch/sdk/gemuarm/tmp/deploy/images/gemuarm

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — build the target image

* Run the image to check if everything is OK
« This will run the QEMU machine in the TARGET shell you were using

* Login using user: root (no password required)

$ rungemu gemuarm nographic

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Hooking a new
module into the build

 Run the devtool to add a new recipe (on the HOST side)

$ devtool add --version 1.0 simplestmodule \
/scratch/src/kmod/simplest-kernel-module/

« This generates a minimal recipe in the workspace layer

 This adds EXTERNALSRC in an
workspace/appends/simplestmodule_git.bbappend file that points
to the sources

* |n other words, the source tree stays where it is, devtool just
creates a wrapper recipe that points to it

Note: this does not add your image to the original build engineer’s image, which
requires changing the platform project’s conf/local.conf

Yocto Project | The Linux Foundation

After the add

Workspace layer layout

$ tree /scratch/sdk/gemuarm/workspace/

/scratch/sdk/gemuarm/workspace/

— appends
| L— simplestmodule git.bbappend

— conf
| L— layer.conf
— README
L recipes
L simplestmodule
L — simplestmodule git.bb

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Build the Module

* Build the new recipe (on the HOST side)

$ devtool build simplestmodule

This will create the simplestmodule.ko kernel module

This downloads the kernel sources (already downloaded for you):
linux-yocto-4.12.12+gitAUTOINC+eda4d18ced4 67b62d8d7b-r0O do_fetch

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Deploy the Module

« Get the target’s IP address from the target serial console

root@qgemuarm:~# ifconfig

* In the eSDK (HOST) shell, deploy the output
(the target’s ip address may change)

$ devtool deploy-target -s simplestmodule root@192.168.7.2

 NOTE: the -s’ option will note any ssh keygen issues, allowing you to
(for example) remove/add this IP address to the known hosts table

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Deploy Detalls

* |In the target (gemuarm), observe the result of deployment

devtool deploy.list 100% 108 0.1KB/s 00:00
devtool deploy.sh 100% 1017 1.0KB/s 00:00
o/

./1ib/

./1lib/modules/

./lib/modules/4.12.12-yocto-standard/
./lib/modules/4.12.12-yocto-standard/extra/
./lib/modules/4.12.12-yocto-standard/extra/hellokernel.ko
./usr/

./usr/include/

./usr/include/simplestmodule/
./usr/include/simplestmodule/Module. symvers

./etc/

./etc/modprobe.d/

./etc/modules-load.d/

NOTE: Successfully deployed
/scratch/sdk/gemuarm/tmp/work/gemuarm-poky-linux-gnueabi/simplestmodule/

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Load the Module

* Inthe target (gemuarm), load the module and observe
the results

root@gemuarm: ~# depmod -a

root@gemuarm: ~# modprobe hellokernel
[874.941880] hellokernel: loading out-of-tree module taints kernel.

[874.960165] When half way through the journey of our life

root@gemuarm: ~# lsmod

Module Size Used by
hellokernel 929 O

nfsd 271348 11

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Unload the Module

 In the target (gemuarm), unload the module

root@gemuarm: ~# modprobe -r hellokernel
[36.005902] I found that I was in a gloomy wood

root@gemuarm: ~# lsmod
Module Size Used by
nfsd 271348 11

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — automatic load of the
module at boot

* In the target (gemuarm), edit the file below and add a new line
containing the module name ‘hellokernel’

root@gemuarm:~# vi /etc/modules-load.d/hello.conf
< insert the following line and save >

hellokernel

« Then reboot the Qemu machine and verify

root@gemuarm:~# reboot

Yocto Project | The Linux Foundation

Questions

