
Activity Two

Kernel Modules with eSDKs

Marco Cavallini

2

Kernel modules with eSDKs – Overview

• The Extensible SDK (eSDK) is a portable and

standalone development environment , basically an

SDK with an added bitbake executive via devtool.

• The “devtool” is a collection of tools to help

development, in particular user space development.

• We can use devtool to manage a new kernel module:

• Like normal applications is possible to import and create a

wrapper recipe to manage the kernel module with eSDKs.

3

Kernel modules with eSDKs –
Compiling a kernel module

• We have two choices

• Out of the kernel tree

• When the code is in a different directory outside of the

kernel source tree

• Inside the kernel tree

• When the code is managed by a KConfig and a Makefile

into a kernel directory

4

Kernel modules with eSDKs –
Pro and Cons of a module outside the kernel tree

● When the code is outside of the kernel source tree in

a different directory

● Advantages

– Might be easier to handle modifications than modify it into

the kernel itself

● Drawbacks

– Not integrated to the kernel configuration/compilation

process

– Needs to be built separately

– The driver cannot be built statically

5

Kernel modules with eSDKs –
Pro and Cons of a module inside the kernel tree

● When the code is inside the same directory tree of

the kernel sources

● Advantages

– Well integrated into the kernel configuration and

compilation process

– The driver can be built statically if needed

● Drawbacks

– Bigger kernel size

– Slower boot time

6

Kernel modules with eSDKs – The source code

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

 printk("When half way through the journey of our life\n");

 return 0;

}

static void __exit hello_exit(void)

{

 printk("I found that I was in a gloomy wood\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module from the Divine Comedy");

MODULE_AUTHOR("Dante Alighieri");

7

Kernel modules with eSDKs – The Makefile

obj-m += hellokernel.o

SRC := $(shell pwd)

all:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules

modules_install:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

• KERNEL_SRC is the location of the kernel sources.

• This variable is set to the value of the STAGING_KERNEL_DIR

within the module class (module.bbclass)

• Sources available on https://github.com/koansoftware/simplest-kernel-module.git

8

Kernel modules with eSDKs – Devtool setup

• Start a new Shell! Otherwise, the existing bitbake environment can cause

unexpected results

• Here is how the eSDK was prepared for this class account:

• This installed the eSDK into:

/scratch/sdk/qemuarm

< DO NOT ENTER THE FOLLOWING COMMANDS : ALREADY EXECUTED >

$ bitbake core-image-base -c populate_sdk_ext

$ cd /scratch/working/build-qemuarm/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-armv5e-toolchain-ext-2.4.sh \

 -d /scratch/sdk/qemuarm –y

$ cd /scratch/sdk/qemuarm

$. environment-setup-armv5e-poky-linux-gnueabi

$ devtool modify virtual/kernel

$

9

Kernel modules with eSDKs – Overview

• Starting from now we are using the eSDK and not the project

• During this exercise we using two different machines

• The HOST containing the eSDK (providing devtool)

• The TARGET running the final qemuarm image

Host

eSDK:~$

Target

root@qemuarm:~$

10

Kernel modules with eSDKs – Globalsetup

• Open two terminal windows and setup the eSDK environment in each

one

$ cd /scratch/sdk/qemuarm

$ bash # safe shell

$ source environment-setup-armv5e-poky-linux-gnueabi

…

SDK environment now set up;

additionally you may now run devtool to perform development tasks.

Run devtool --help for further details.

$

11

Kernel modules with eSDKs – build the target image

• After you have setup the eSDK environment, build an image

• This will create a new image into:

/scratch/sdk/qemuarm/tmp/deploy/images/qemuarm

$ devtool build-image

12

Kernel modules with eSDKs – build the target image

• Run the image to check if everything is OK

• This will run the QEMU machine in the TARGET shell you were using

• Login using user: root (no password required)

$ runqemu qemuarm nographic

13

Kernel modules with eSDKs – Hooking a new
module into the build

• Run the devtool to add a new recipe (on the HOST side)

• This generates a minimal recipe in the workspace layer

• This adds EXTERNALSRC in an

workspace/appends/simplestmodule_git.bbappend file that points

to the sources

• In other words, the source tree stays where it is, devtool just

creates a wrapper recipe that points to it

• Note: this does not add your image to the original build engineer’s image, which

requires changing the platform project’s conf/local.conf

$ devtool add --version 1.0 simplestmodule \
 /scratch/src/kmod/simplest-kernel-module/

14

After the add

Workspace layer layout

$ tree /scratch/sdk/qemuarm/workspace/

/scratch/sdk/qemuarm/workspace/

├── appends

│ └── simplestmodule_git.bbappend

├── conf

│ └── layer.conf

├── README

└── recipes

 └── simplestmodule

 └── simplestmodule_git.bb

15

Kernel modules with eSDKs – Build the Module

• Build the new recipe (on the HOST side)

This will create the simplestmodule.ko kernel module

This downloads the kernel sources (already downloaded for you):

 linux-yocto-4.12.12+gitAUTOINC+eda4d18ce4_67b62d8d7b-r0 do_fetch

$ devtool build simplestmodule

16

Kernel modules with eSDKs – Deploy the Module

• Get the target’s IP address from the target serial console

root@qemuarm:~# ifconfig

• In the eSDK (HOST) shell, deploy the output

 (the target’s ip address may change)

• NOTE: the ‘-s’ option will note any ssh keygen issues, allowing you to

(for example) remove/add this IP address to the known hosts table

$ devtool deploy-target -s simplestmodule root@192.168.7.2

17

Kernel modules with eSDKs – Deploy Details

• In the target (qemuarm), observe the result of deployment

devtool_deploy.list 100% 108 0.1KB/s 00:00

devtool_deploy.sh 100% 1017 1.0KB/s 00:00

./

./lib/

./lib/modules/

./lib/modules/4.12.12-yocto-standard/

./lib/modules/4.12.12-yocto-standard/extra/

./lib/modules/4.12.12-yocto-standard/extra/hellokernel.ko

./usr/

./usr/include/

./usr/include/simplestmodule/

./usr/include/simplestmodule/Module.symvers

./etc/

./etc/modprobe.d/

./etc/modules-load.d/

NOTE: Successfully deployed

/scratch/sdk/qemuarm/tmp/work/qemuarm-poky-linux-gnueabi/simplestmodule/

18

Kernel modules with eSDKs – Load the Module

• In the target (qemuarm), load the module and observe

the results

root@qemuarm:~# depmod –a

root@qemuarm:~# modprobe hellokernel

[874.941880] hellokernel: loading out-of-tree module taints kernel.

[874.960165] When half way through the journey of our life

root@qemuarm:~# lsmod

Module Size Used by

hellokernel 929 0

nfsd 271348 11

19

Kernel modules with eSDKs – Unload the Module

• In the target (qemuarm), unload the module

root@qemuarm:~# modprobe -r hellokernel

[36.005902] I found that I was in a gloomy wood

root@qemuarm:~# lsmod

Module Size Used by

nfsd 271348 11

20

Kernel modules with eSDKs – automatic load of the
module at boot

• In the target (qemuarm), edit the file below and add a new line

containing the module name ‘hellokernel’

• Then reboot the Qemu machine and verify

root@qemuarm:~# vi /etc/modules-load.d/hello.conf

< insert the following line and save >

hellokernel

root@qemuarm:~# reboot

21

Questions

