
Advanced Class

Paul Barker, Henry Bruce, Robert Berger, Stephano Cetola, Beth Flanagan,

Scott Murray, Khem Raj, David Reyna, Marek Vasut, Trevor Woerner

 Yocto Project Developer Day 

Edinburg  25 October 2018

2

Advanced Class

• Class Content (download these slides!):

• https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018

• Requirements:

• Wireless connection: same as ELCE conference

• SSH (Windows: e.g. “putty”)

• Wireless Registration:

• Will be passed out

https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018
https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018

3

Agenda – The Advanced Class

9:00- 9:15 Keynote

 9:15- 9:45 Package Feeds

 9:45-10:15 Slim Bootloader

10:15-10:30 Morning Break

10:30-11:15 U-Boot Bootloader

11:15-12:00 Devtool, Next steps

12:00-12:45 Lunch

12:45- 1:45 Licensing 2.0

 1:45- 2:15 Device Trees 2.0

 2:30- 2:45 Afternoon Break

 2:45- 3:15 Image Size Reduction

 3:15- 3:45 (Fun with) Libraries/SDK and OE/YP

 3:45- 4:15 Yocto Project - Rarely asked questions

 4:15- 5:00 Tools, Toaster, User Experience

 5:00- 5:30 Forum, Q and A

Class Account Setup

5

Yocto Project Dev Day Lab Setup

• The virtual host’s resources can be found here:

• Your Project: "/scratch/poky/build-qemuarm“

• Extensible-SDK Install: "/scratch/sdk/qemuarm“

• Sources: "/scratch/src“

• Poky: "/scratch/poky"

• Downloads: "/scratch/downloads"

• Sstate-cache: "/scratch/sstate-cache“

• You will be using SSH to communicate with your

virtual server.

6

FYI: How class project was prepared (1/2)

$

$ cd /scratch

$ git clone -b sumo git://git.yoctoproject.org/poky.git

$ cd poky

$

$ bash # set up local shell

$ # Prepare the project

$./scratch/poky/oe-init-build-env build

$ echo "MACHINE = \"qemuarm\"" >> conf/local.conf

$ echo "SSTATE_DIR = \"/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \"/scratch/downloads\"" >> conf/local.conf

$ echo "IMAGE_INSTALL_append = \" gdbserver openssh libstdc++ \

 curl \"" >> conf/local.conf

$

$ # Build the project

$ bitbake core-image-base

$

7

FYI: How class project was prepared (2/2)

$ # Build the eSDK

$

$ bitbake core-image-base -c populate_sdk_ext

$ cd /scratch/poky/build/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-armv5e-toolchain-ext-*.sh \

 -y -d /scratch/sdk/qemuarm

$ exit # return to clean shell

$

$

$ bash # set up local shell

$ cd /scratch/sdk/qemuarm

$. /scratch/sdk/qemuarm/environment-setup-armv5e-poky-linux-gnueabi

$ devtool modify virtual/kernel

$ exit # return to clean shell

$

8

NOTE: Clean Shells!

• We are going to do a lot of different exercises in

different build projects, each with their own

environments.

• To keep things sane, you should have a new clean

shell for each exercise.

• There are two simple ways to do it:

1. Close your existing SSH connection and open a new one

-- or –

2. Do a “bash” before each exercise to get a new sub-shell,

and “exit” at the end to remove it, in order to return to a

pristine state.

Activity One

Keynote

Nicolas Dechesne

Activity Two

On Target Development using Package Feeds

Stephano Cetola

11

Package Feed Overview

• Tested package types: rpm and ipk

• For rpm packages, we now use DNF instead of smart

• Setting up a package feed is EASY

• stephano.cetola@linux.intel.com

• @stephano approves this message

• Signing your packages and package feed is doable

• Two major use cases:

• On target development (faster and smarter)

• In the field updates (YMMV)

mailto:stephano.cetola@linux.intel.com

12

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

13

Setting up a package feed - Target Setup

• Install Package Management on the target

• EXTRA_IMAGE_FEATURES += " package-management "

• Set the correct package class

• PACKAGE_CLASSES = "package_rpm”

• Customize the feed (optional)

• PACKAGE_FEED_URIS = http://my-server.com/repo

• PACKAGE_FEED_BASE_PATHS = "rpm”

• PACKAGE_FEED_ARCHS = ”all armv7at2hf-neon beaglebone"

• Edit /etc/yum.repos.d/oe-remote-repo.repo (optional)

• enabled=1

• metadata_expire=0

• gpgcheck=0

http://my-server.com/repo
http://my-server.com/repo
http://my-server.com/repo
http://my-server.com/repo
http://my-server.com/repo

14

Setting up a package feed

• Publish a repo, index the repo, and…

• You are now running a web server on port 5678

$ bitbake core-image-minimal

...

$ bitbake package-index

...

$ twistd -n web --path tmp/deploy/rpm -p 5678

[-] Log opened

[-] twistd 16.0.0 (/usr/bin/python 2.7.12) starting up.

[-] reactor class: twisted.internet.epollreactor.EPollReactor.

[-] Site starting on 5678

15

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

16

Caveats

• Running bitbake world can take some time

• You may want to update your repo as needed

• Serve the repo from a build machine

• Or simply rsync to a webserver

• Do not forget to run `bitbake packge-index`

• Package index will not auto-update

• Good practice is to dogfood your repo

17

Understanding RPM Packages and repomd.xml

• repomd == Repo Metadata

• This is the “package index”

• Repository Tools

• createrepo

• rpm2cpio

• dnf (replaces yum)

• yum-utils (historical)

• Important Commands

• rpm -qip (general info)

• rpm -qpR (depends)

• https://wiki.yoctoproject.org/wiki/TipsAndTricks/UsingRPM

https://wiki.yoctoproject.org/wiki/TipsAndTricks/UsingRPM
https://wiki.yoctoproject.org/wiki/TipsAndTricks/UsingRPM

Package Feeds: On Target Demo

Beaglebone Repo on AWS

19

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

20

Signing The Packages

• Inherit bbclass to enable signing functionality

• INHERIT += “sign_rpm”

• Define the GPG key that will be used for signing.

• RPM_GPG_NAME = "key_name”

• Provide passphrase for the key

• RPM_GPG_PASSPHRASE = "passphrase"

21

Signing The Package Feed

• Inherit bbclass to enable signing functionality

• INHERIT += “sign_package_feed”

• Define the GPG key that will be used for signing.

• PACKAGE_FEED_GPG_NAME = "key_name”

• Provide passphrase for the key

• PACKAGE_FEED_GPG_PASSPHRASE_FILE =

"passphrase"

22

Signing The Package Feed (optional)

• GPG_BIN

• GPG binary executed when the package is signed

• GPG_PATH

• GPG home directory used when the package is signed.

• PACKAGE_FEED_GPG_SIGNATURE_TYPE

• Specifies the type of gpg signature. This variable applies

only to RPM and IPK package feeds. Allowable values for

the PACKAGE_FEED_GPG_SIGNATURE_TYPE are

"ASC", which is the default and specifies ascii armored, and

"BIN", which specifies binary.

23

Testing Packages with ptest (Optional? Not really!)

• Package Test (ptest)

• Runs tests against packages

• Contains at least two items:

1 the actual test (can be a script or an elaborate system)

2 shell script (run-ptest) that starts the test (not the actual test)

• Simple Setup

• DISTRO_FEATURES_append = " ptest”

• EXTRA_IMAGE_FEATURES += "ptest-pkgs”

• Installed to: /usr/lib/package/ptest

24

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

25

Keeping feeds secure

• PACKAGE_FEED_GPG_PASSPHRASE_FILE

• This should NOT go in your configuration as plain text.

• Is your code proprietary?

• You should probably be shipping a binary in Yocto

• bin_package.bbclass: binary can be .rpm, .deb, .ipk

• Have you thought about DEBUG_FLAGS?

• See bitbake.conf for more details

• The flags can be filtered or set in the recipe

26

On Target Development – Better, Faster, Stronger

Topics

• Setting up a package feed

• On target example – AWS + Beaglebone Black

• Signing package feeds

• Keeping your code secure

• The future of package feeds

27

The Future of Package Feeds – Can We Upgrade?

• Repository

• Switch to new source entries

• Remove unknown (3rd party) repositories

• Package

• Check there are no broken or renamed packages

• Versioning: what happens when they go backwards

• Remove and install specific packages (release dependent)

• Remove blacklisted / obsolete and add whitelisted

• Dreaming Even Bigger…

• Kernels, Desktops (UI), Permissions, Users, Groups

Activity Three

Slim Bootloader

 Stephano Cetola

29

Slim Bootloader

• Slides are available at:

• https://wiki.yoctoproject.org/wiki/File:Developing_Boot_Soluti

ons_for_Intel_IoT_Unique_Use_Cases_rev1a.pptx

• Master DevDay Slides Page:

• https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018

https://wiki.yoctoproject.org/wiki/File:Developing_Boot_Solutions_for_Intel_IoT_Unique_Use_Cases_rev1a.pptx
https://wiki.yoctoproject.org/wiki/File:Developing_Boot_Solutions_for_Intel_IoT_Unique_Use_Cases_rev1a.pptx
https://wiki.yoctoproject.org/wiki/File:Developing_Boot_Solutions_for_Intel_IoT_Unique_Use_Cases_rev1a.pptx
https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018

Activity Four

U-Boot bootloader

Marek Vasut

31

Booting contemporary hardware

 Contemporary embedded system boots like this

 Power on

 (optional) BootROM

 (optional) First stage bootloader

 Next stage bootloader

 (optional) other bootloader stages

 Linux kernel

 Userspace

 We will focus on the bootloader parts

32

U-Boot bootloader

 De-facto standard bootloader in embedded

 Capable of starting Linux, *BSD, RTOSes, UEFI apps

 U-Boot is also a boot monitor

 U-Boot has a powerful command shell

 Allows manipulating with the boot process

 (boot different kernel, script the boot process...)

 U-Boot is also a debug multitool

 U-Boot shell tools allow operating hardware blocks

 (memory IO, SPI, I2C, network, USB, ...)

33

Experimenting with U-Boot bootloader

 Three ways of doing that:

 U-Boot sandbox target

 U-Boot built as a Linux userspace binary

 QEMU

 U-Boot running in QEMU

 Real hardware (danger zone)

 U-Boot running on real HW

 Flashing incorrect bootloader brick the device :-)

34

Experimenting with U-Boot bootloader in OE

 Use the meta-dto-microdemo layer

 Metalayer contains convenience recipes

 The u-boot-sandbox recipe

 To quickly build U-Boot sandbox native target

 See recipes-bsp/u-boot/

 Kernel config changes to enable virt platform

 See recipes-kernel/linux/files/force-virt.cfg

 DTO related things for later

35

DTO Hands-on 1/2

• Add meta-dto-demo to bblayers.conf BBLAYERS:

• Rebuild u-boot, u-boot-sandbox-native and qemu-native

$ echo "BBLAYERS += \"/scratch/src/dto/meta-dto-microdemo\"" \

 >> conf/bb_layers.conf

$ echo "MACHINE = \"qemuarm\"" >> conf/local.conf

$ echo "SSTATE_DIR = \"/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \"/scratch/downloads\"" >> conf/local.conf

$ echo "UBOOT_MACHINE = \"qemu_arm_defconfig\"" >> conf/local.conf

$ bitbake -c cleansstate u-boot u-boot-sandbox-native qemu-native \

 virtual/kernel

$ bitbake u-boot u-boot-sandbox-native u-boot-mkimage-native \

 qemu-native virtual/kernel

Experimenting with U-Boot bootloader in OE

36

DTO Hands-on 1/2

• Start the u-boot sandbox (use Ctrl-C to exit)

$./tmp/work/x86_64-linux/u-boot-sandbox-native/\

 1_2018.01-r0/git/u-boot

U-Boot 2018.01-dirty (Oct 14 2018 - 11:30:36 +0000)

[…]

SCSI: Net: No ethernet found.

IDE: Bus 0: not available

Hit any key to stop autoboot: 0

=>

=> help

? - alias for 'help'

base - print or set address offset

bootz - boot Linux zImage image from memory

[…]
=> help bootz

bootz - boot Linux zImage image from memory

Usage:

bootz [addr [initrd[:size]] [fdt]]

 - boot Linux zImage stored in memory

 The argument 'initrd' is optional and specifies the address

Experimenting with U-Boot bootloader in OE

37

DTO Hands-on 1/2

• Start U-Boot in QEMU

• (CTRL-A x to quit QEMU)

$./tmp/work/x86_64-linux/qemu-native/\

 2.11.1-r0/build/arm-softmmu/qemu-system-arm \

 -machine virt \

 -bios tmp/deploy/images/qemuarm/u-boot.bin -nographic

U-Boot 2018.01 (Oct 11 2018 - 13:14:21 +0000)

DRAM: 128 MiB

WARNING: Caches not enabled

Using default environment

In: pl011@9000000

Out: pl011@9000000

Err: pl011@9000000

Net: No ethernet found.

Hit any key to stop autoboot: 0

=>

Experimenting with U-Boot bootloader in OE

38

DTO Hands-on 1/2

• Generate suitable NOR flash image

• Start U-Boot with this NOR flash image

$ dd if=/dev/zero of=/tmp/test.bin bs=16M count=0 seek=1

$ dd if=tmp/deploy/images/qemuarm/u-boot.bin \

 of=/tmp/test.bin conv=notrunc

$ dd if=tmp/deploy/images/qemuarm/zImage \

 of=/tmp/test.bin bs=1M seek=1 conv=notrunc

$./tmp/work/x86_64-linux/qemu-native/2.11.1-r0/\

 build/arm-softmmu/qemu-system-arm \

 -machine virt -bios /tmp/test.bin -nographic

U-Boot 2018.01 (Oct 11 2018 - 13:14:21 +0000)

DRAM: 128 MiB

In: pl011@9000000

Out: pl011@9000000

Err: pl011@9000000

Net: No ethernet found.

Hit any key to stop autoboot: 0

=>

Booting the kernel zImage

39

DTO Hands-on 1/2

• Figure out where the RAM is

• Kernel is ~ 8 MiB, copy it to RAM start + 0x8000

=> cp 0x100000 0x40008000 0x200000

=> bdi

arch_number = 0x00000000

boot_params = 0x00000000

DRAM bank = 0x00000000

-> start = 0x40000000

-> size = 0x08000000

baudrate = 115200 bps

TLB addr = 0x47FF0000

relocaddr = 0x47F88000

reloc off = 0x47F88000

irq_sp = 0x46F66ED0

sp start = 0x46F66EC0

Early malloc usage: 104 / 400

fdt_blob = 46f66ee8

Booting the kernel zImage

40

DTO Hands-on 1/2

• Boot the zImage with DT

• The $fdtcontroladdr is DT generated by QEMU

 You can dump the DT by appending -machine dumpdtb=file.dtb

=> bootz 0x40008000 - $fdtcontroladdr

Kernel image @ 0x40008000 [0x000000 - 0x524da0]

Flattened Device Tree blob at 46f66ee8

 Booting using the fdt blob at 0x46f66ee8

 Using Device Tree in place at 46f66ee8, end 46f79ee7

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.14.67-yocto-standard (oe-user@oe-host)

(gcc version 7.3.0 (GCC)) #1 PREEMPT Thu Oct 11 13:10:58 UTC 2018

[0.000000] CPU: ARMv7 Processor [412fc0f1] revision 1 (ARMv7), cr=10c53c7d

[0.000000] CPU: div instructions available: patching division code

[0.000000] CPU: PIPT / VIPT nonaliasing data cache, PIPT instruction cache

[0.000000] OF: fdt: Machine model: linux,dummy-virt

[0.000000] Memory policy: Data cache writeback

[0.000000] psci: probing for conduit method from DT.

[0.000000] psci: PSCIv0.2 detected in firmware.

Booting the kernel zImage

mailto:oe-user@oe-host
mailto:oe-user@oe-host
mailto:oe-user@oe-host
mailto:oe-user@oe-host
mailto:oe-user@oe-host

41

Kernel image types – zImage and Image

 zImage and Image

 Linux binary with decompressor

 No protection against bitrot

 Set up registers as needed and jump to it

 DT is optional and separate

 Boot with U-Boot “bootz” command

 On Aarch64, similar type of image is called Image

 Boot with “booti” command

 uImage

 fitImage

42

Kernel image types – uImage

 zImage and Image

 uImage

 Envelope around arbitrary file

 Legacy since forever

 Small header with CRC32 and metadata

 Note that CRC32 is weak

 Metadata contain payload type, load address...

 Wraps only one single file

 Boot with “bootm” command

 fitImage

43

Kernel image types – fitImage

 zImage and Image

 uImage

 FitImage

 Multi-component image

 Based on DT

 Can bundle multiple files with different properties

 Configurable checksum per-entry

 CRC32, MD5, SHA1, SHA256...

 Supports digital signatures

 RSA2048, RSA4096...

44

DTO Hands-on 1/2

• QEMU specific step – dump the DTB

• Copy over the fitImage source from the metalayer

• Build the fitImage:

=> $ qemu-system-arm -machine virt -nographic -machine dumpdtb=qemu.dtb

Building the kernel fitImage

$ cp /scratch/src/dto/meta-dto-microdemo/recipes-kernel/\

 linux/files/fit-image.its .

$ export PATH=$PATH:tmp/work/x86_64-linux/dtc-native/\

 1.4.5-r0/image/scratch/poky/build/tmp/work/x86_64-linux/\

 dtc-native/1.4.5-r0/recipe-sysroot-native/usr/bin/

$./tmp/work/x86_64-linux/u-boot-mkimage-native/\

 1_2018.01-r0/git/tools/mkimage -f ./fit-image.its /tmp/fitImage

FIT description: Linux kernel and FDT blob

Created: Sun Oct 14 12:57:59 2018

 Image 0 (kernel-1)

 Description: Linux kernel

 Created: Sun Oct 14 12:57:59 2018

 Type: Kernel Image

 Compression: uncompressed

 Data Size: 5393824 Bytes = 5267.41 KiB = 5.14 MiB

 Architecture: ARM

 OS: Linux

[…]

45

DTO Hands-on 1/2

• Generate suitable NOR flash image

• Start U-Boot with this NOR flash image

$ dd if=/dev/zero of=/tmp/test.bin bs=16M count=0 seek=1

$ dd if=tmp/deploy/images/qemuarm/u-boot.bin \

 of=/tmp/test.bin conv=notrunc

$ dd if=/tmp/fitImage \

 of=/tmp/test.bin bs=1M seek=1 conv=notrunc

$./tmp/work/x86_64-linux/qemu-native/2.11.1-r0/\

 build/arm-softmmu/qemu-system-arm \

 -machine virt -bios /tmp/test.bin -nographic

[…]

=> setenv fdt_high 0x48000000

=> bootm 0x100000

Loading kernel from FIT Image at 00100000 ...

 Using 'conf-1' configuration

 Trying 'kernel-1' kernel subimage

[…]

 Loading Device Tree to 46f49000, end 46f5bfff ... OK

Starting kernel ...

Booting the kernel fitImage

46

DTO Hands-on 1/2

$ cat fit-image.its

/dts-v1/;

/ {

 description = "Linux kernel and FDT blob";

 images {

 kernel-1 {

 description = "Linux kernel";

 data = /incbin/("./tmp/deploy/images/qemuarm/zImage");

 type = "kernel";

 arch = "arm";

 os = "linux";

 compression = "none";

 load = <0x40008000>;

 entry = <0x40008000>;

 hash-1 {

 algo = "crc32";

 };

 };

 fdt-1 {

 description = "Flattened Device Tree blob";

 data = /incbin/("./qemu.dtb");

 type = "flat_dt";

 arch = "arm";

 compression = "none";

 hash-1 {

 algo = "md5";

 };

 };

 };

fitImage source format

47

DTO Hands-on 1/2

/ {

[…]

 description = "Linux kernel and FDT blob";

 images {

 Kernel-1 {

 ...

 };

 Fdt-1 {

 ...

 };

 };

 configurations {

 default = "conf-1";

 conf-1 {

 description = "Boot Linux kernel with FDT blob";

 kernel = "kernel-1";

 fdt = "fdt-1";

 hash-1 {

 algo = "sha1";

 };

 };

 };

};

fitImage source format

48

DTO Hands-on 1/2

• It is possible to bundle multiple

 Kernel images, FDTs, firmwares, bitstreams

 Have multiple configurations

• The $fdt_high variable

 Sets the upper bound memory address for FDT relocation

 Special value 0xffffffff = -1 means do not relocate FDT

 Some platforms need FDT close to the kernel binary

• Information about uImage and fitImage, “iminfo”

• Extracting data from fitImage – “imxtract”

Notes on fitImage

49

DTO Hands-on 1/2

=> iminfo 0x100000

Checking Image at 00100000 ...

 FIT image found

 FIT description: Linux kernel and FDT blob

 Image 0 (kernel-1)

 Description: Linux kernel

 Type: Kernel Image

 Compression: uncompressed

 Data Start: 0x001000ec

 Data Size: 5393824 Bytes = 5.1 MiB

 Architecture: ARM

 OS: Linux

 Load Address: 0x40008000

 Entry Point: 0x40008000

 Hash algo: crc32

 Hash value: bf5547fe

 Image 1 (fdt-1)

[...]

 Default Configuration: 'conf-1'

 Configuration 0 (conf-1)

 Description: Boot Linux kernel with FDT blob

 Kernel: kernel-1

 FDT: fdt-1

Checking hash(es) for FIT Image at 00100000 ...

 Hash(es) for Image 0 (kernel-1): crc32+

Notes on fitImage iminfo

50

DTO Hands-on 1/2

=> iminfo 0x100000

Checking Image at 00100000 ...

 FIT image found

 FIT description: Linux kernel and FDT blob

 Image 0 (kernel-1)

 Description: Linux kernel

 Type: Kernel Image

[...]

 Image 1 (fdt-1)

[...]

 Default Configuration: 'conf-1'

 Configuration 0 (conf-1)

=> help bootm

bootm - boot application image from memory

Usage:

bootm [addr [arg ...]]

 - boot application image stored in memory

...

For the new multi component uImage format (FIT) addresses

 must be extended to include component or configuration unit name:

 addr:<subimg_uname> - direct component image specification

 addr#<conf_uname> - configuration specification

 Use iminfo command to get the list of existing component

 images and configurations.

Notes on fitImage configurations

51

DTO Hands-on 1/2

• OE can generate fitImage using the kernel-bbclass

• Add the following entries to your machine config:

• Note that it is possible to use multiple DTs

 The fitImage bbclass will generate one fitImage configuration

per DT entry

OE kernel-fitimage bbclass

KERNEL_IMAGETYPE = “fitImage”

KERNEL_CLASSES += “kernel-fitimage”

KERNEL_DEVICETREE = “your-machine.dtb”

Activity Five

Devtool, next steps

Trevor Woerner

Activity Six

Licensing 2.0

Beth Flanagan, Paul Barker

Activity Seven

Device Trees 2.0

Marek Vasut

55

Device Tree

• Data structure describing hardware

• Usually passed to OS to provide information about

HW topology where it cannot be detected/probed

• Tree, made of named nodes and properties

• Nodes can contain other nodes and properties

• Properties are a name-value pair

• See https://en.wikipedia.org/wiki/Device_tree

• DT can contain cycles by means of phandles

• phandles provide simple references to device

definitions (e.g. “<&L2>” = level 2 cache definition)

• phandles can be used to reference objects in

different trees (e.g. use that predefined cache type)

The Device Tree

56

Device Tree Example

• arch/arm/boot/dts/arm-realview-eb-a9mp.dts

/dts-v1/;

#include "arm-realview-eb-mp.dtsi"

/ {

 model = "ARM RealView EB Cortex A9 MPCore";

[...]

 cpus {

 #address-cells = <1>;

 #size-cells = <0>;

 enable-method = "arm,realview-smp";

 A9_0: cpu@0 {

 device_type = "cpu";

 compatible = "arm,cortex-a9";

 reg = <0>;

 next-level-cache = <&L2>;

 };

[...]

 &pmu {

 interrupt-affinity = <&A9_0>, <&A9_1>, <&A9_2>, <&A9_3>;

}; };

C-like inheritance

pHandles (“&”)

Instance = reg

57

Problem – Variable hardware

• DT started on big machines

 Hardware was mostly static

 DT was baked into ROM, optionally modified by bootloader

• DT was good, so it spread

 First PPC, embedded PPC, then ARM …

• There always was slightly variable hardware

 Solved by patching DT in bootloader

 Solved by carrying multiple DTs

 Solved by co-operation of board files and DT

 ^ all that does not scale

A bit of DT history

58

Problem – Variable hardware – 201x edition

• Come 201x, variable cardware became easy to make:

 Cheap devkits with hats, lures, capes, …

 FPGAs and SoC+FPGAs became commonplace …

 => Combinatorial explosion of possible HW configurations

• Solution retaining developers’ sanity

 Describe only the piece of HW that is being added

 Combine these descriptions to create a DT for the system

 Enter DT overlays

DT today

59

Device Tree Overlays

• DT: Data structure describing hardware

• DTO: necessary change(s) to the DT to support particular feature

 Example: an expansion board, a hardware quirk,...

• Example DTO: vendor=‘hello’, devicetype=‘dto’ (no magic)

/dts-v1/;

/plugin/;

/ {

 #address-cells = <1>;

 #size-cells = <0>;

 fragment@0 {

 reg = <0>;

 target-path = "/";

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <0>;

 hello@0 {

 compatible = "hello,dto";

 reg = <0>;

}; }; }; };

Ovelay at DT root

Must match

kernel module’s

compatibilty

Simple DTO structure

60

Advanced DTO example

/dts-v1/;

/plugin/;

[...]

 fragment@2 {

 reg = <2>;

 target-path = "/soc/usb@ffb40000";

 __overlay__ {

[...]

 status = "okay";

 };

 };

 fragment@3 {

 reg = <3>;

 target = <&gmac1>; /* phandle */

 __overlay__ {

[...]

 status = "okay";

 phy-mode = "gmii";

 };

 };

• Enable USB port, ETH port (over “gmii” channel)

Enable this USB port

Enable this Ethernet

port, use “gigabit

media-independent interface”

61

DTO Hands-on

• Use pre-prepared meta-dto-microdemo layer

• meta-dto-demo contains:

 Kernel patch with DTO loader with ConfigFS interface

 Kernel config fragment to enable the DTO and loader

 Demo module

 Demo DTO source (hello-dto.dts)

 core-image-dto-microdemo derivative from

core-image-minimal with added DTO examples and DTC

Practical part

62

DTO Example Layer Tree
\-- meta-dto-microdemo

 |-- conf

 | \-- layer.conf

 |-- recipes-core

 | \-- images

 | \-- core-image-dto-microdemo.bb

 \-- recipes-kernel

 |-- hello-dto-dto

 | |-- files

 | | \-- hello-dto.dts

 | \-- hello-dto-dto_0.1.bb

 |-- hello-dto-mod

 | |-- files

 | | |-- COPYING

 | | |-- hello-dto.c

 | | \-- Makefile

 | \-- hello-dto-mod_0.1.bb

 \-- linux

 |-- files

 | |-- 0001-ARM-dts-Compile-the-DTS-with-symbols-enabled.patch

 | |-- 0002-OF-DT-Overlay-configfs-interface-v7.patch

 | \-- enable-dtos.cfg

 \-- linux-yocto_4.12.bbappend

" dtc hello-dto-mod hello-dto-dto "

“install -m 0644 *.dts ${D}/lib/firmware/dto/”

Debug messages for module load, remove

Patch in “overlay-configfs” (*)

“+DTC_FLAGS := -@”

CONFIG_OF_OVERLAY=y

CONFIG_OF_CONFIGFS=y

63

DTO Hands-on 1/2

• Add meta-dto-demo to bblayers.conf BBLAYERS:

• Rebuild virtual/kernel and core-image-dto-microdemo

• Adjust runqemu configuration for the ‘virt’ machine (hack)

$ echo "BBLAYERS += \"/scratch/src/dto/meta-dto-microdemo\"" \

 >> conf/bb_layers.conf

$ echo "MACHINE = \"qemuarm\"" >> conf/local.conf

$ echo "SSTATE_DIR = \"/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \"/scratch/downloads\"" >> conf/local.conf

$ bitbake -c cleansstate virtual/kernel

$ bitbake core-image-dto-microdemo

Practical part – Apply DTO from running Linux

$ sed -i \

 -e "/^qb_machine/ s/.*/qb_machine = -machine virt/" \

 -e "/^qb_dtb/ s/.*/qb_dtb = /" \

 -e "/^qb_opt_append/ s/.*/qb_opt_append = -show-cursor/" \

 tmp/deploy/images/qemuarm/ \

 core-image-dto-microdemo-qemuarm.qemuboot.conf

64

DTO Hands-on 1/2

• Start the new image in QEMU (login: root, no password)

• (CTRL-A x to quit QEMU)

$ runqemu slirp qemuarm nographic

Practical part – Apply DTO from running Linux

65

DTO Hands-on 2/2

• Compile DTO

• Load DTO

• Confirm DTO was loaded

• Unload DTO

$ dtc -I dts -O dtb /lib/firmware/dto/hello-dto.dts > \

 /tmp/hello-dto.dtb

$ mkdir /sys/kernel/config/device-tree/overlays/mydto

$ cat /tmp/hello-dto.dtb > \

 /sys/kernel/config/device-tree/overlays/mydto/dtbo

rmdir /sys/kernel/config/device-tree/overlays/mydto

ls /proc/device-tree

... hello@0 ...

ls /sys/kernel/config/device-tree/overlays/mydto

dtbo path status

cat /sys/kernel/config/device-tree/overlays/mydto/status

Applied

66

DTO Overlay Patch, DTO Workflows

• Why is the configfs overlay support in a patch?

• It is not being accepted into mainline kernel because of the

potential security risk (i.e. manufactures accidentally ship it in a

production device and do not lock it down)

• U-Boot can also modify DT and pass the modified DT to Linux

• Look at “fdt” command

• Load DT, point U-Boot to it

• Use “fdt” command to add/remove/modify nodes and props

• Boot Linux with the same address to which U-Boot is pointing

Drawbacks of DTOs in Linux

67

DTO Hands-on 2/2

• Create /chosen/bootargs prop with value “hello=kernel”

• Start the kernel with modified QEMU DT

=> fdt addr $fdtcontroladdr

=> fdt resize

=> fdt print /chosen bootargs

libfdt fdt_getprop(): FDT_ERR_NOTFOUND

=> fdt set /chosen bootargs hello=kernel

=> fdt print /chosen bootargs

bootargs = "hello=kernel"

=> bootm 0x100000:kernel-1 - $fdtcontroladdr

Loading kernel from FIT Image at 00100000 ...

 Trying 'kernel-1' kernel subimage

...
Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.14.67-yocto-standard (oe-user@oe-host…

...

[0.000000] Built 1 zonelists, mobility grouping on. Total pages...

[0.000000] Kernel command line: hello=kernel

[0.000000] PID hash table entries: 512 (order: -1, 2048 bytes)

Modify DT in U-Boot manually

68

DTO Hands-on 2/2

• Use DTC to compile DTO

• Generate the NOR flash image with U-Boot, zImage and DTO

• Start the QEMU

dtc -I dts -O dtb \

 meta-dto-microdemo/recipes-kernel/linux/files/fdto.dts \

 -o fdto.dtb

$ qemu-system-arm -machine virt -bios /tmp/test.bin -nographic

U-Boot 2018.01 (Oct 14 2018 - 13:36:49 +0000)

DRAM: 128 MiB

Hit any key to stop autoboot: 0

=>

dd if=/dev/zero of=/tmp/test.bin bs=16M count=0 seek=1

dd if=tmp/deploy/images/qemuarm/u-boot.bin of=/tmp/test.bin \

 conv=notrunc

dd if=/tmp/fitImage of=/tmp/test.bin bs=1M seek=1 conv=notrunc

dd if=fdto.dtb of=/tmp/test.bin bs=1M seek=8 conv=notrunc

Apply DTO in U-Boot manually

69

DTO Hands-on 2/2

• Apply DTO to QEMU DT in U-Boot manually

=> help fdt

fdt - flattened device tree utility commands

Usage:

fdt addr [-c] <addr> [<length>]

 - Set the [control] fdt location to <addr>

fdt apply <addr>

 - Apply overlay to the DT

fdt resize [<extrasize>]

 - Resize fdt to size + padding to 4k addr + some

 optional <extrasize> if needed

fdt print <path> [<prop>]

 - Recursive print starting at <path>

=> fdt addr $fdtcontroladdr

=> fdt resize

=> fdt print /chosen

chosen {

 stdout-path = "/pl011@9000000";

};

=> fdt apply 0x800000

=> fdt print /chosen

chosen {

 bootargs = "hello=dto"; // <------- Here is the new node

 stdout-path = "/pl011@9000000";

};

70

DTO Hands-on 2/2

• Generate fitImage with bundled DTO

$ cp meta-dto-microdemo/recipes-kernel/linux/files/\

 fit-image-dto.its .

$ dtc -I dts -O dtb meta-dto-microdemo/recipes-kernel/\

 linux/files/fdto.dts -o fdto.dtb

$./tmp/work/x86_64-linux/u-boot-mkimage-native/\

 1_2018.01-r0/git/tools/mkimage \

 -f ./fit-image-dto.its /tmp/fitImage

FIT description: Linux kernel and FDT blob

Created: Sun Oct 14 14:17:28 2018

 Image 0 (kernel-1)
…

 Configuration 0 (conf-1)

 Description: Boot Linux kernel with FDT blob

 Kernel: kernel-1

 FDT: fdt-1

 Fdto-1

$ dd if=/dev/zero of=/tmp/test.bin bs=16M count=0 seek=1

$ dd if=tmp/deploy/images/qemuarm/u-boot.bin of=/tmp/test.bin \

 conv=notrunc

$ dd if=/tmp/fitImage of=/tmp/test.bin bs=1M seek=1 conv=notrunc

Apply DTO in fitImage to DT in fitImage

71

DTO Hands-on 2/2

• FitImage source files extras

/dts-v1/;

/ {

...

 fdto-1 {

 description = "Flattened Device Tree overlay blob";

 data = /incbin/("./fdto.dtb");

 type = "flat_dt";

 arch = "arm";

 compression = "none";

 load = <0x44008000>;

 hash-1 {

 algo = "md5";

 };

 };

...

 configurations {

 conf-1 {

 fdt = "fdt-1", "fdto-1";

...

 };

 };

};

72

DTO Hands-on 2/2

• Boot fitImage containing DTO

$ qemu-system-arm -machine virt -bios /tmp/test.bin -nographic

U-Boot 2018.01 (Oct 14 2018 - 13:36:49 +0000)

=> setenv fdt_high 0x48000000 ; bootm 0x100000

Loading kernel from FIT Image at 00100000 ...

[...]

 Loading fdt from 0x00624f40 to 0x44000000

Loading fdt from FIT Image at 00100000 ...

 Trying 'fdto-1' fdt subimage

 Description: Flattened Device Tree overlay blob

 Type: Flat Device Tree

 Compression: uncompressed

 Data Start: 0x00635010

 Data Size: 177 Bytes = 177 Bytes

 Architecture: ARM

 Load Address: 0x44008000

 Hash algo: md5

 Hash value: 7fd334678b272c17fbfac51bcdb9a40c

 Verifying Hash Integrity ... md5+ OK

 Loading fdt from 0x00635010 to 0x44008000

 Booting using the fdt blob at 0x44000000

 Loading Kernel Image ... OK

 Loading Device Tree to 46f58000, end 46f5cc0a ... OK

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.14.67-yocto-standard (oe-user@oe-host) (gcc version 7.3.0 (GCC)...

...

[0.000000] Built 1 zonelists, mobility grouping on. Total pages: 32480

[0.000000] Kernel command line: hello=dto

[0.000000] PID hash table entries: 512 (order: -1, 2048 bytes)

73

DTO encore

• DTOs can be used to operate SoC+FPGA hardware

• Done using FPGA manager in Linux (load firware into ASIC)

fragment@0 {

 reg = <0>;

 /* controlling bridge */

 target-path = "/soc/fpgamgr@ff706000/bridge@0";

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <1>;

 region@0 {

 compatible = "fpga-region";

 #address-cells = <2>;

 #size-cells = <1>;

 ranges = <0 0x00000000 0xff200000 0x00080000>;

 firmware-name = "fpga/bitstream.rbf";

 fpga_version@0 {

 compatible = "vendor,fpgablock-1.0";

 reg = <0 0x0 0x04>;

 };

FPGA Manager

Firmware file

74

DTO Overlay Patch, DTO Workflows

• Example for newbie using DTO’s to prepare and debug DT’s

• Debug the DTO with the manual configfs overlay

• Add the DTO to U-Boot and then debug the hardware and kernel

modules

• Turn the DTO into a pure DT for production

75

DTO Extra
• Recommended way to load custom DTO at boot

• There are sysvinit, systemd, custom scripts, or add to uboot, however

there is no standard for that currently

• Top debugging techniques, tricks and tips:

• The “/proc/device-tree” is the image of the live DT, to check if your

overlay was applied properly

• The configfs interface provides you a status information for each overlay

• Top common user errors and gothchas

• Usually typos in the DT (no verification in DT compiler)

• Not exact “compatible” match between DTO/kernel module

• Anything special about DTO's vis-à-vis Yocto Project

• Not really, they are orthogonal

• The “dtc” compiler is part of openembedded-core layer

76

DTO Extra

• Examples of DTO’s in production systems

• RaspberryPi (hats)

• Beaglebone (cape manager)

• Some Intel boards (e.g. via ACPI)

• More on DT at:

• https://www.devicetree.org/

• ePAPR specification of DT:

• https://elinux.org/images/c/cf/Power_ePAPR_APPROV

ED_v1.1.pdf

• Contact:

• Contact: Marek Vasut marek.vasut@gmail.com

• https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf

https://elinux.org/images/c/cf/Power_ePAPR_APPROVED_v1.1.pdf
https://elinux.org/images/c/cf/Power_ePAPR_APPROVED_v1.1.pdf
mailto:marek.vasut@gmail.com
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf
https://schd.ws/hosted_files/elciotna18/c1/elc-2018.pdf

Activity Eight

Image Size Reduction

Scott Murray

78

Why bother optimizing distribution size?

• There are embedded products that still benefit from the
cost-optimization of reducing RAM and storage footprint

• e.g. developers interested in using Linux in IoT edge devices

• An increasing need to keep devices up to date means
smaller images have a bandwidth and download time
advantage, and potentially a reduced security attack
surface

• Use cases such as:

• Small recovery partition images

• Container images

• Supporting older hardware (e.g. Tiny Core
Linux, http://distro.ibiblio.org/tinycorelinux/)

http://distro.ibiblio.org/tinycorelinux/

79

poky-tiny

• Added in Yocto Project denzil release in April 2012

• “Poky-tiny is intended to define a tiny Linux system comprised
of a Linux kernel tailored to support each specific MACHINE
and busybox.” (from poky-tiny.conf)

• As with poky, intended to act as a starting point for your own
distribution.

• Caveats:
• Only builds for qemux86 (and recently qemux86-64) by default

• Only supports core-image-minimal

• So only has a barebones kernel, libc, and BusyBox

• Documented (somewhat) at:
• https://www.yoctoproject.org/docs/current/dev-manual/dev-

manual.html#building-a-tiny-system

https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#building-a-tiny-system

80

poky-tiny contents

$ cat installed-package-sizes.txt

606 KiB musl

548 KiB busybox

23 KiB netbase

4 KiB update-alternatives-opkg

3 KiB busybox-udhcpc

3 KiB busybox-mdev

3 KiB base-files

2 KiB run-postinsts

2 KiB busybox-syslog

0 KiB packagegroup-core-boot

0 KiB base-passwd

81

So how big is poky-tiny?

82

So how big is poky-tiny? (continued)

83

So how big is poky-tiny? (Notes / Observations)

• Numbers pulled from data generated by buildhistory class

• Missing uclibc sizes for dora - dizzy releases due to build

issues

• Noticeable trend of glibc increasing in size over time

• No obvious dramatic size difference between uclibc and

musl

• Installed package size != root filesystem size
• There is some overhead due to the inodes from the many

small files used by update-alternatives-opkg metadata

• The root filesystem is assembled from binary packages, and

the update-alternatives-opkg tool is used to handle alternate

providers of binaries (e.g. BusyBox versus util-linux)
• Removed in read-only images or with FORCE_RO_REMOVE

option

84

poky-tiny changes versus poky

• TCLIBC

• ENABLE_WIDEC

• USE_NLS

• DISTRO_FEATURES

• linux-yocto-tiny

85

poky-tiny changes: TCLIBC

• TCLIBC variable selects the standard C library to use; default

value is glibc, as of the krogoth release the other option is musl

(previously was uclibc)
• musl (https://wiki.musl-libc.org/) is a lightweight C library

implementation
• Actively maintained, MIT licensed
• In addition to binary size benefits, there are significant runtime

memory usage ones as well
• See http://www.etalabs.net/compare_libcs.html for a detailed

comparison
• While the recipes in oe-core are test built with musl, recipes

from other layers may not work out of the box, and other
software may require patching to build
• Almost all the recipes in meta-openembedded build against musl,

the remaining handful are actively being worked on
• Typical failures are due to accidentally relying on non-standard

glibc extension or definitions

https://wiki.musl-libc.org/
https://wiki.musl-libc.org/
https://wiki.musl-libc.org/
http://www.etalabs.net/compare_libcs.html

86

poky-tiny changes versus poky

• TCLIBC

• ENABLE_WIDEC

• USE_NLS

• DISTRO_FEATURES

• linux-yocto-tiny

87

poky-tiny changes: TCLIBC

• TCLIBC variable selects the standard C library to use; default

value is glibc, as of the krogoth release the other option is musl

(previously was uclibc)
• musl (https://wiki.musl-libc.org/) is a lightweight C library

implementation
• Actively maintained, MIT licensed
• In addition to binary size benefits, there are significant runtime

memory usage ones as well
• See http://www.etalabs.net/compare_libcs.html for a detailed

comparison
• While the recipes in oe-core are test built with musl, recipes

from other layers may not work out of the box, and other
software may require patching to build
• Almost all the recipes in meta-openembedded build against musl,

the remaining handful are actively being worked on
• Typical failures are due to accidentally relying on non-standard

glibc extension or definitions

https://wiki.musl-libc.org/
https://wiki.musl-libc.org/
https://wiki.musl-libc.org/
http://www.etalabs.net/compare_libcs.html

88

poky-tiny changes: ENABLE_WIDEC

• ENABLE_WIDEC variable controls wide character support

for the ncurses terminal library

• Disabling ncurses wide character support only affects

console applications

• However, not all applications will build with it disabled
• core-image-minimal and core-image-full-cmdline images

build, core-image-sato does not

• Size savings are not necessarily dramatic
• About 200 KB if the image pulls in ncurses

• ATM core-image-minimal does not actually pull in any

packages that have ncurses as a dependency...

89

poky-tiny changes: USE_NLS

• USE_NLS variable controls native language support for

applications, i.e. internationalization via the gettext library

• Disabling NLS might be problematic if you have

applications using gettext to provide internationalized

output

• However, again not all applications will build with it

disabled
• core-image-minimal and core-image-full-cmdline build, core-

image-sato does not

• Size savings are dependent on application usage of

gettext
• No savings in core-image-minimal, about 2 MB in core-

image-full-cmdline

90

poky-tiny changes: DISTRO_FEATURES

• DISTRO_FEATURES variable controls software feature

support

• Mostly translates to configure script options, but some features add

kernel module and runtime package dependencies

• poky-tiny removes almost all of the default features that poky

enables, leaving on IPv4 and IPv6 support on as well as a

couple of other base features

• The features you need are largely dependent on your target

image contents
• e.g. x11, pulseaudio, many fine-grained libc features for glibc

• See Chapter 14 of the Yocto Project Reference Manual for a

breakdown of DISTRO and MACHINE features

• https://www.yoctoproject.org/docs/current/ref-manual/ref-

manual.html#ref-features

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#ref-features

91

poky-tiny changes: linux-yocto-tiny

• Provides a highly pruned kernel configuration

• qemux86 specific

• Needs to be over-ridden with

PREFERRED_PROVIDER_virtual/kernel if you want to

test poky-tiny on another architecture

• General kernel size reduction guidelines apply, i.e. only

enable features and drivers for the target platform

• A static kernel without modules is a win if possible since it

results in an overall size reduction

92

Common image feature / package sizes

• Note that size numbers include all the dependencies that

are pulled in

• Package management
• rpm: ~102 MB (includes OpenSSL, Python 3, etc.)

• deb: ~22 MB

• ipk: ~4 MB

• SSH daemon:
• OpenSSH (and OpenSSL): ~6.7 MB

• Dropbear: ~300 KB

• Systemd: ~30 MB

• Python 2.7: ~4 MB, ~40 MB with all standard modules

• Python 3.5: ~17 MB, ~64 MB with all standard modules

93

core-image-minimal-initramfs

• Another option is to build the target image into an initramfs

and attach it to the kernel
• initramfs ends up as cpio.gz attached to the kernel image

• unpacked into a memory filesystem and used as the rootfs

• Makes for a smaller overall combined image size at the

expense of memory usage

• core-image-minimal-initramfs is probably best viewed as a

template, copy and prune out anything not needed for

your target

94

Other size reduction options

• Splitting files out of a package with FILES_${PN}-foo
• Example use would be to pick out a tool from core-utils,

since it is not split into per-tool packages like util-linux

• A more extreme example is removing all .py Python

source files, leaving only the compiled .pyc files
• Currently requires modifying distutils-common-base.bbclass

to make it generic for all Python modules

• Use ROOTFS_POSTPROCESS_COMMAND to remove

files from the image
• e.g. removing unneeded update-alternatives-opkg metadata

• https://www.yoctoproject.org/docs/current/ref-manual/ref-

manual.html#var-ROOTFS_POSTPROCESS_COMMAND

• If using glibc, tweak IMAGE_LINGUAS to remove

unwanted locales

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#var-ROOTFS_POSTPROCESS_COMMAND

95

Summary / Recommendations

• If starting out, take poky-tiny.conf as a starting point to

define your own distribution configuration, then add things

to it

• Otherwise, it is likely that switching to using musl will
provide the biggest immediate improvement

• Use the buildhistory class to help simplify investigating
what is taking up space in your image
• https://www.yoctoproject.org/docs/current/ref-manual/ref-

manual.html#maintaining-build-output-quality

• For kernel (and BusyBox) size reduction start with the

guidelines at:

• https://www.yoctoproject.org/docs/current/dev-manual/dev-

manual.html#trim-the-kernel

https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#maintaining-build-output-quality
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel
https://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#trim-the-kernel

Activity Nine

(Fun with) Libraries/SDK and OE/YP

Robert Berger

97

(Fun with) Libraries/SDK and OE/YP

• Slides are available at:

• https://wiki.yoctoproject.org/wiki/File:Having-fun-

handouts.pdf

• Home “Ship It” content download:

• http://www.rlbl.me/ypdevd2018/

• Master DevDay Slides Page:

• https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018

https://wiki.yoctoproject.org/wiki/File:Having-fun-handouts.pdf
https://wiki.yoctoproject.org/wiki/File:Having-fun-handouts.pdf
https://wiki.yoctoproject.org/wiki/File:Having-fun-handouts.pdf
https://wiki.yoctoproject.org/wiki/File:Having-fun-handouts.pdf
https://wiki.yoctoproject.org/wiki/File:Having-fun-handouts.pdf
https://wiki.yoctoproject.org/wiki/File:Having-fun-handouts.pdf
https://wiki.yoctoproject.org/wiki/DevDay_Edinburgh_2018

Activity Ten

Yocto Project - Rarely asked questions

Khem Raj

99

How to add layers to Workspace

• bitbake-layers

• add-layer/remove-layer – Add/Remove a layer to workspace

• show-layer – Show current list of used layers

• show-recipes – List available recipes

• show-appends – List appends and corresponding recipe

• show-overlayed – List overlayed recipes

100

Are there some Workspace helper Tools

• bitbake-whatchanged

• print what will be done between the current and last builds

 $ bitbake core-image-sato

 # Edit the recipes

 $ bitbake-whatchanged core-image-sato

101

How to make changes in workspace

• Prepare a package to make changes
devtool modify <recipe>

• Change sources
• Change into workspace/sources/<recipe>

• Edit …..

• Build Changes
$ devtool build <recipe>

• Test changes
$ devtool deploy-target <recipe> <target-IP>

• Make changes final
$ devtool finish <recipe> <layer>

102

How to enquire package information ?

• oe-pkgdata-util - queries the pkgdata files written out during do_package

subcommands:

 lookup-pkg Translate between recipe-space package names
and

 runtime package names

 list-pkgs List packages

 list-pkg-files List files within a package

 lookup-recipe Find recipe producing one or more packages

 package-info Show version, recipe and size information for
one or

 more packages

 find-path Find package providing a target path

 read-value Read any pkgdata value for one or more
packages

 glob Expand package name glob expression

Use oe-pkgdata-util <subcommand> --help to get help on a specific
command

103

How to run meta-data self tests (unit tests)

• oe-selftest
Script that runs unit tests against bitbake and

other Yocto related tools. The goal is to
validate tools functionality and metadata
integrity

• List available tests

$ oe-selftest –l

• Run all tests

$ oe-selftest --run-all-tests

• Run Selective Unit Test

$ oe-selftest -r devtool
devtool.DevtoolTests.test_devtool_add_fetch_simpl
e

• https://wiki.yoctoproject.org/wiki/Oe-selftest

https://wiki.yoctoproject.org/wiki/Oe-selftest
https://wiki.yoctoproject.org/wiki/Oe-selftest
https://wiki.yoctoproject.org/wiki/Oe-selftest

104

How to run image auto-test

• Can test image (-c testimage) (-c testimage_auto)

• Testing SDK (-c testsdk and –c testsdkext)

• https://www.yoctoproject.org/docs/latest/dev-manual/dev-

manual.html#performing-automated-runtime-testing

INHERIT += "testimage"

DISTRO_FEATURES_append = " ptest"

EXTRA_IMAGE_FEATURES_append = " ptest-pkgs"

##TEST_SUITES = "auto"

TEST_IMAGE_qemuall = "1"

TEST_TARGET_qemuall = "qemu”

TEST_TARGET ?= "simpleremote"

TEST_SERVER_IP = "10.0.0.10"

TEST_TARGET_IP ?= "192.168.7.2"

INHERIT += "testsdk"

SDK_EXT_TYPE = "minimal"

https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing
https://www.yoctoproject.org/docs/latest/dev-manual/dev-manual.html#performing-automated-runtime-testing

105

How to send Code upstream

• create-pull-request

 Examples:

 create-pull-request -u contrib -b joe/topic

• send-pull-request

Examples:

Send-pull-request –a –p pull-XXXX

106

How to Customize Distro

• Example poky-lsb

require conf/distro/poky.conf

require conf/distro/include/security_flags.inc

DISTRO = "poky-lsb"

DISTROOVERRIDES = "poky:linuxstdbase"

DISTRO_FEATURES_append = " pam largefile opengl"

PREFERRED_PROVIDER_virtual/libx11 = "libx11"

Ensure the kernel nfs server is enabled

KERNEL_FEATURES_append_pn-linux-yocto = " features/nfsd/nfsd-
enable.scc"

Use the LTSI Kernel for LSB Testing

PREFERRED_VERSION_linux-yocto_linuxstdbase ?= "4.14%"

107

• odroid-c2-hardkernel.conf

#@TYPE: Machine

#@NAME: odroid-c2-hardkernel

#@DESCRIPTION: Machine configuration for
odroid-c2 systems using uboot/kernel
from hardkernel supported vendor tree

#@MAINTAINER: Armin Kuster
<akuster808@gmail.com>

require conf/machine/odroid-c2.conf

SERIAL_CONSOLE = "115200 ttyS0"

UBOOT_CONSOLE = "console=ttyS0,115200"

KERNEL_DEVICETREE_FN_odroid-c2-
hardkernel = "meson64_odroidc2.dtb"

KERNEL_DEVICETREE_odroid-c2-hardkernel =
"meson64_odroidc2.dtb"

• odroid-c2.conf

#@TYPE: Machine

#@NAME: odroid-c2

#@DESCRIPTION: Machine configuration for
odroid-c2 systems

#@MAINTAINER: Armin Kuster
<akuster808@gmail.com>

require conf/machine/include/amlogic-
meson64.inc

DEFAULTTUNE ?= "aarch64"

include conf/machine/include/odroid-
default-settings.inc

EXTRA_IMAGEDEPENDS += "u-boot secure-
odroid"

KERNEL_DEVICETREE_FN = "meson-gxbb-
odroidc2.dtb"

KERNEL_DEVICETREE = "amlogic/meson-gxbb-
odroidc2.dtb"

How to Customize Machine

108

How to setup/use feeds ?

• Configuring feeds in image

$ PACKAGE_FEED_URIS = "http://10.0.0.10:8000/"

• Start a http server in deploydir

$ cd tmp/deploy/ipk

$ python3 -m http.server 8000

• Run Package manager on booted target

$ opkg update

$ opkg upgrade

109

Questions

Activity Eleven

Tools, Toaster, User Experience

David Reyna

111

Toaster: Latest Features (1/2)

• Toaster Documentation

• https://www.yoctoproject.org/docs/latest/toaster-manual/toaster-

manual.html

• Toaster Service Without a Web Server (“noweb”)

• Good for capturing command line build(s) directly into the db

• Toaster Service Without Remote Builds (“nobuild”)

• Good for sharing build local status, without enabling external

people creating projects and starting builds on your host

• Toaster Service – Build Status within Containers

• New REST/JSON API to access the progress and health of bitbake

builds via HTTP; very handy for containers

• Build Status options: “Completed”, “In Progress”, “Specific Status”

112

Toaster: Latest Features (2/2)

• Compatibility between

Command Line and

Toaster builds

• New “Import command

line build” option

• New “Merge Toaster

Settings” into standard

conf files”

113

Intel System Studio 2019: Yocto Project Compatible

• The Wind River Application and Project plug-ins have

been shared with Intel System Studio, with the idea of

open sourcing them to Eclipse.org

• Implementation is architecture agnostic

• Application Project Features:

• Awareness of YP compatible SDKs/eSDKs

• Ability to register multiple SDKs

• Automatic generation of “Build Specs” for each machine

variant in each SDK

• Ability to enable/disable debug flags

• Debugger deploy and access over GDB/TCF

• Set of sample applications

114

Intel System Studio 2019: Yocto Project Compatible

• Platform Project

Features:

• Configuration/Upda

tes via Toaster

• Basic build targets

directly from ISS

• Eclipse-based

Kernel

Configuration Tool

• Tree view to

browse deploy

artifacts

115

Intel System Studio 2019: Yocto Project Compatible

• Import:

• Existing command

line project

• Existing SDK/eSDK

116

New Security Response Tool (SRTool)

• While there is heighten awareness about device vulnerabilities,

what is often missing is awareness about the process of

managing the security response process itself

• Wind River is sharing to open source a tool to help manager the

organization’s security response management:

• Better ways to handle 1000+ CVEs per month

• Better ways to connect CVE’s to defects to product

• Better ways to allow easy access to the full vulnerability status,

generate reports, clean exports to public CVE DB

• Better ways to use automation to keep all the data sources

automatically up to date

• Community Page:
• https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool

• ELCE Presentation:

• https://sched.co/HOLr

https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool
https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool
https://sched.co/HOLr
https://sched.co/HOLr
https://sched.co/HOLr

Activity Nine

A User's Experience

Henry Bruce

118

What I’ll be talking about

• Learnings from my painful ramp on Yocto

• Get similar experiences from the audience

• Funnel these learnings into topics in the new

Development Tasks Manual

• Review improvements in usability over the past few

years

119

General areas I’ll be covering

• Proxies

• Debugging build errors

• Writing recipes

• Recipes vs. Packages

• Application Development

• Cool things I stumbled across

• Improvements

120

Some context

• Started as an open source neophyte

• Had never really used git or dug into Linux

• Spent six months in extreme pain

• Mainly due to OpenJDK

• For the next year I was learning

• After 2 years I felt I could competently help others

• Over 3 years later, there's still so much to learn

• I should have taken better notes

121

Proxies

• A common problem for new users

• Proxy wiki page has 135k hits
• https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

• Environment variable approach covers most cases
• But fails when non-fetch tasks reach out to network

• This includes most node.js recipes

• How important is network isolation for post fetch tasks?

• Chameleonsocks has been failsafe for me
• But some say this an abuse of docker

• What’s your solution?

https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy
https://wiki.yoctoproject.org/wiki/Working_Behind_a_Network_Proxy

122

When things go wrong

• You’ve gone through the quick start guide and have

figured out how to add packages to an image

• You’re feeling pretty good but then you get a build

error.

• Due to many moving parts it’s easy to panic when

something breaks

• Or at least it was for me

123

It broke – what would have helped?

• Nicer output from bitbake on bad directory/file names

• Understanding the task pipeline

• fetch / unpack / configure / build / install / package

• Knowing how to generate dependency graph

• Decoding “magic” folder names in tmp/work

• Understanding recipe vs. package

• Knowing how to run specific task for specific recipe

• Knowing what’s packaged and in rootfs

124

Recipes

• Plenty of resources to writing simple recipes

• But then there seems to be a gap

• Can be hard to work out what a recipe is doing

pn = d.getVar('PN', 1)

metapkg = pn + '-dev'

d.setVar('ALLOW_EMPTY_' + metapkg, "1")

blacklist = [metapkg]

metapkg_rdepends = []

packages = d.getVar('PACKAGES', 1).split()

for pkg in packages[1:]:

 if not pkg in blacklist and pkg.endswith('-dev'):

 metapkg_rdepends.append(pkg)

d.setVar('RRECOMMENDS_' + metapkg, ' '.join(metapkg_rdepends))

• Walk through a couple of good citizens in oe-core?

125

Recipes and packages

• Easy to assume there is 1:1 mapping

• Sometimes there isn’t

• devtool search rocks

• Sub-packages can trip you up

• OpenCV vs. UPM

• Creating sub-packages for large project seems to be

the “right” pattern

• But I can’t find obvious guidance in docs

• Thoughts?

126

Application Development

• I was initially confused by the terminology

• ADT, SDK, eSDK, toolchain

• In retrospect ADT seemed the clearest naming

• I’m now working on a real-time SDK

• Yocto built Linux is our initial target platform

• I tell my team to develop for the target using the Yocto SDK

• Confusion all round

• Eclipse

• Broken when I first tried

• I need to get back to it

127

Improvements

• eSDK and devtool

• Recipetool

• ROS support

• Is it worth investing more, or do returns diminish?

• Package feeds

• Credit to dnf (setting server means build checks if it’s there)

• But package-index is a big gotcha

• Development Tasks Manual

• CROPS

• Who’s using it?

128

Cool things I stumbled across

• PACKAGECONFIG

• INSANE_SKIP

• Overrides

• Layer dependencies

• Setting package variables from outside recipe

• Conditional logic with python

• Adding package to image if its layer is present

• What’s you favorite?

Questions and Answers

Thank you for your

participation!

