
Advanced Class

Paul Barker, Marco Cavallini, Beth Flanagan, Sean Hudson, Joshua Lock,

Scott Murray, Tim Orling, David Reyna, Rudi Streif, Marek Vasut

 Yocto Project Developer Day 

Prague 26 October 2017

2

Advanced Class

• Class Content:

• https://wiki.yoctoproject.org/wiki/DevDay_Prague_2017

• Requirements:

• Wireless

• SSH (Windows: e.g. “putty”)

• Wireless Registration:

• TBD

3

Agenda – The Advanced Class

9:00- 9:15 Opening session, What's New

9:15- 9:30 Account setup

9:30-10:15 Devtool: creating new content

10:15-10:30 Morning Break

10:30-11:15 DT overlays

11:15-12:00 Userspace: packaging, installation, system services

12:00- 1:00 Lunch

1:00- 1:45 License Compliance and Auditing

1:45- 2:15 CROPS

2:30- 2:45 Afternoon Break

2:45- 3:15 Maintaining your Yocto Project Distribution

3:15- 3:50 Kernel Modules with eSDKs

3:50- 4:30 Analytics and the Event System

4:30- 5:00 Recipe specific sysroots

5:00- 5:30 Forum, Q and A

Class Account Setup

5

Notes for the Advanced Class:

• The class will be given with YP-2.4 (Rocko)

• Wifi Access:

• SSID: <TBD>

• Password: <TBD>

• Your account’s IP access addresses

• SSH (password “devday”):

• ssh ilab01@devdayXXX.yoctoproject.org

• HTTP:
devdayXXX.yoctoproject.org:8000

6

Yocto Project Dev Day Lab Setup

• The virtual host’s resources can be found here:

• Your Project: "/scratch/working/build “

• Extensible-SDK Install: "/scratch/sdk/qemuarm“

• Sources: "/scratch/src“

• Poky: "/scratch/poky"

• Downloads: "/scratch/downloads"

• Sstate-cache: "/scratch/sstate-cache“

• You will be using SSH to communicate with your virtual server.

7

FYI: How class project was prepared

$

$ cd /scratch

$ git clone -b rocko git://git.yoctoproject.org/poky.git

$ cd poky

$ bash

$./scratch/poky/oe-init-build-env build

$ echo "MACHINE = \“qemuarm\"" >> conf/local.conf

$ echo "SSTATE_DIR = \“/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \“/scratch/downloads\"" >> conf/local.conf

$ echo "IMAGE_INSTALL_append = \" gdbserver openssh libstdc++ \

 curl \"" >> conf/local.conf

$ # Capture the build into a Bitbake/Toaster database

$. toaster start webport=0.0.0.0:8000

$ # Build the project

$ bitbake core-image-base

$ # When you are done ...

$. toaster stop

$ exit

8

NOTE: Clean Shells!

• We are going to do a lot of different exercises in

different build projects, each with their own

environments.

• To keep things sane, you should have a new clean

shell for each exercise.

• There are two simple ways to do it:

1. Close your existing SSH connection and open a new one

-- or –

2. Do a “bash” before each exercise to get a new sub-shell,

and “exit” at the end to remove it, in order to return to a

pristine state.

Activity One!

Yocto Project 2.4 (Rocko)

10

Yocto Project – What is new in 2.4 Rocko

• Yocto Project 2.4 Themes

• Process/Tooling/Workflow Improvements - Patchwork,

Patchtest, SWAT, Error reporting, Reproducability, Memory

Resident Bitbake now default

• Improving Testing/QA Automation/Coverage Efficiency -

oeselftest, Test automation, CI/AB - modernization and

moving more into YP

• Creating Leading edge Build Technology - Delivering prebuilt

binaries to customers, Improve Binary/Build Reproducibility

• Enhancing IoT Application Development - CROPS (eclipse

support, dev containers), eSDK (team workflow), devtool

(team workflow, extend heuristics), juci from openWRT

support

11

Yocto Project – Release Notes
* Linux kernel 4.12, 4.10, 4.9 (LTS/LTSI), 4.4 (LTS)

* gcc 7.2

* glibc 2.26

* Significant work on binary reproducibility - >98% of packages used to build core-

image-sato are now reproducible.

* Support for Vulkan 3D graphics/compute API, enabled by default in poky distro

configuration

* New "distrooverrides" class to selectively turn DISTRO_FEATURES into overrides

(enabling bbappends with functionality conditional upon DISTRO_FEATURES)

* New VOLATILE_LOG_DIR variable to allow making /var/log persistent

* Support for merged / and /usr with "usrmerge" DISTRO_FEATURES item

* Parallelised ipk and deb package creation for improved performance

* Go improvements:

* Python improvements:

* wic image creator enhancements:

* devtool/recipetool enhancements:

* BitBake improvements:

* Package QA improvements:

* RPM improvements

…

And so much more, including Known Issues, Security Fixes and Recipe Updates!

Activity Two

Devtool

Tim Orling, Sean Hudson, David Reyna

13

d e v t o o l – Overview

• devtool is a collection of tools to aid developer workflow:

• Create, update, modify recipes in the build environment

• Streamlines development by performing repetitive tasks via tinfoil
(wrapper around bitbake) and recipetool.

• Application development in user space (with eSDK)

• The extensible SDK (eSDK) is a portable and standalone
development environment , basically an SDK with an
added bitbake executive via devtool.

• The eSDK runs in a Linux environment, but we will cover
running it in a Mac OS X (or Windows) environment in the
CROPS session (using Docker containers).

• NOTE: this session will focus on the layer maintainer/system
integrator’s workflow (build environment)

14

d e v t o o l – Types of projects currently supported

• Autotools (autoconf and automake)

• Cmake

• qmake

• Plain Makefile

• Out-of-tree kernel module

• Binary package (i.e. “-b” option)

• Node.js module

• Python modules that use setuptools or distutils

15

d e v t o o l – Overview
Example Workflow

workspace
devtool add

Recipe

source code

binary

devtool

deploy-target

devtool

build

devtool

edit-recipe

Development phase

Host

Testing

phase

On target board or

in emulator shell

collect issues

test binary

Release

phase

Repo

devtool

finish

• Create a new recipe

• Create workspace

layer

• Build it

• Deploy to target

• Testing testing testing

• Correct any findings in

the recipe

• Merge new recipe into

layer

16

d e v t o o l – Overview

17

d e v t o o l - Baking in a sandbox

Class will cover these use cases for devtool

• Development cycle with a new recipe

• Create a recipe from a source tree, then we will build,

deploy, edit, build, and deploy

• Development cycle to modify the source of existing

recipe

• Extract recipe and source, then edit, build, and deploy

• Development cycle to upgrade an existing recipe

• Extract recipe and source, then edit, build, and deploy

18

d e v t o o l - subcommands
Beginning work on a recipe:
 add Add a new recipe

 modify Modify the source for an existing recipe

 upgrade Upgrade an existing recipe

Getting information:
 status Show workspace status

 search Search available recipes

Working on a recipe in the workspace:
 build Build a recipe

 edit-recipe Edit a recipe file in your workspace

 configure-help Get help on configure script options

 update-recipe Apply changes from external source tree to recipe

 reset Remove a recipe from your workspace

Testing changes on target:
 deploy-target Deploy recipe output files to live target machine

 undeploy-target Undeploy recipe output files in live target

 build-image Build image including workspace recipe packages

Advanced:
 create-workspace Set up workspace in an alternative location

 extract Extract the source for an existing recipe

 sync Synchronize the source tree for an existing recipe

19

Activity 0 – Setup our build enviroment

• Start a new Shell! Otherwise, the existing bitbake
environment can cause unexpected results

<open new clean shell>
$ cd /scratch

• Source the build environment

 $. ./poky/oe-init-build-env build-devday

• Use the pre-populated downloads and sstate-cache
$ sed -i -e 's:#DL_DIR ?= "${TOPDIR}/downloads":DL_DIR ?=
"/scratch/downloads":g' conf/local.conf

$ sed -i -e 's:#SSTATE_DIR ?= "${TOPDIR}/sstate-
cache":SSTATE_DIR ?= "/scratch/sstate-cache":g'
conf/local.conf

• Set machine to qemuarm

$ sed -i -e 's:#MACHINE ?= "qemuarm":MACHINE ?=
"qemuarm":g' conf/local.conf

20

Activity 0 – Setup a new layer to receive our work

• Best practice is to use a function/application

layer, so let’s create one

 $ pushd ..

 $ yocto-layer create foo

 $ popd

• Add our new layer to our configuration

 $ bitbake-layers add-layer ../meta-foo

• Setup complete! Time to create a new recipe…

21

Activity 1: Add a new recipe
• Optional: build core-image-minimal first

$ pwd
(should be in /scratch/build-devday)
$ devtool build-image core-image-minimal

• Add our new recipe

 $ devtool add nano \
 https://www.nano-editor.org/dist/v2.7/nano-2.7.4.tar.xz

• Examine what devtool created:
$ ls workspace
$ find workspace/recipes
$ pushd workspace/sources/nano/
$ git log
$ popd

• Now we are ready to build it:

$ devtool build nano
$ devtool build-image core-image-minimal

22

Activity 1: Add a new recipe (continued)

• Run our image in QEMU

 $ runqemu slirp nographic qemuarm

 (login as root, no password)

• Run our application

 $ nano

 (Ctrl-x to exit nano)

• Examine where it was installed

 $ ls /usr/bin/nano

 $ exit

 (Ctrl-a x to exit qemu)

23

Activity 1: Add a new recipe (continued)

• “Publish” our recipe

 $ devtool finish nano ../meta-foo

• Clean up

 $ rm –rf workspace/sources/nano

• Profit!

24

Activity 2: Modify a recipe

• Sanity check

$ pwd

(should be in /scratch/build-devday)

• Re-inforce what we just learned
$ devtool add hello \

 https://ftp.gnu.org/gnu/hello/hello-

 2.10.tar.gz

$ devtool build hello

$ devtool build-image core-image-minimal

$ runqemu slirp nographic qemuarm

 (login as root, no password)

• Run our new application
$ hello

Hello, world!

25

Activity 2: Modify a recipe (continued)

• Sanity check
$ pwd
(should be in /scratch/build-devday)

• Re-inforce what we just learned
$ devtool add hello \
 https://ftp.gnu.org/gnu/hello/hello- 2.10.tar.gz
$ devtool build hello
$ devtool build-image core-image-minimal
$ runqemu slirp nographic qemuarm
 (login as root, no password)

• Run our new application
$ hello
Hello, world!
$ exit
(Ctrl-a x to exit qemu)

• Publish our new recipe and cleanup
$ devtool finish hello ../meta-foo
$ rm –rf workspace/sources/hello

26

Activity 2: Modify a recipe (continued)

• Might need to let git know who you are
$ git config --global user.email
you@example.com
$ git config --global user.name "Your Name”

• Modify our application’s source code
$ devtool modify hello
$ pushd workspace/sources/hello
$ sed -i -e 's:"Hello, world!":"Hello, Prague!":g'
src/hello.c
$ git log
$ git commit -m "Change world to Prague"

• Build and run our modified application
$ devtool build-image core-image-minimal
$ runqemu slirp nographic qemuarm
(login as root, no password)
$ hello
Hello, Prague!
$ exit
(Ctrl-a x to exit qemu)

mailto:you@example.com

27

Activity 2: Modify a recipe (continued)

• Publish our modifed source and recipe and cleanup
$ popd
$ devtool finish hello ../meta-foo
$ rm –rf workspace/sources/hello

• Review what changed
$ pushd ../meta-foo/recipes-hello/hello
$ ls
$ cat hello_2.10.bb
$ cat hello_%.bbappend
$ cat hello/0001-Change-world-to-Prague.patch
$ popd

• Cleanup

$ rm –rf workspace/sources/hello

• Profit!

28

Activity 3: Upgrade a recipe

• Upgrade our nano recipe to the latest version
$ devtool upgrade nano --version 2.8.7

• (Hack) Fix fetch URL to allow upgrade to v2.8.x
$ sed -i -e 's:v2.7:v2.8:g' \

../meta-foo/recipes-nano/nano/nano_2.7.4.bb

• NOTE: there is a bugzilla open to add the ability to
change the fetch URL
[https://bugzilla.yoctoproject.org/show_bug.cgi?id=10722]

• Cleanup our failed upgrade attempt

$ rm –rf workspace/sources/nano

• Actually upgrade
$ devtool upgrade nano --version 2.8.7

29

Activity 3: Upgrade a recipe (continued)

• Review what changed
$ ls workspace/recipes/nano
$ cat workspace/recipes/nano/nano_2.8.7.bb

• Test our upgraded application
$ devtool build-image core-image-minimal
$ runqemu slirp nographic qemuarm
(login as root, no password)
$ nano
(Ctrl-x to exit nano)
$ exit
(Ctrl-a x to exit qemu)

• Publish our work and cleanup
$ devtool finish nano ../meta-foo
$ rm –rf workspace/sources/nano

• Profit!

30

d e v t o o l - References

1. Yocto devtool documentation
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-
your-workflow

2. Tool Author Paul Eggleton’s ELC Presentation:
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_20
15_0.pdf

3. Trevor Woerner’s Tutorial
https://drive.google.com/file/d/0B3KGzY5fW7laQmgxVXVTSDJHeFU/view?usp=sharing

4. Sean Hudson’s YP Dev Day Presentation (more focused on eSDK workflow):
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf

5. Instructor’s ELC Presentation:
https://elinux.org/images/e/e2/2017_ELC_--
_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf

https://www.youtube.com/watch?v=CiD7rB35CRE

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
https://drive.google.com/file/d/0B3KGzY5fW7laQmgxVXVTSDJHeFU/view?usp=sharing
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://www.youtube.com/watch?v=CiD7rB35CRE
https://www.youtube.com/watch?v=CiD7rB35CRE
https://www.youtube.com/watch?v=CiD7rB35CRE

Activity Three

DT overlays

Marek Vasut

32

Device Tree

• Data structure describing hardware

• Usually passed to OS to provide information about

HW topology where it cannot be detected/probed

• Tree, made of named nodes and properties

 Nodes can contain other nodes and properties

 Properties are a name-value pair

 See https://en.wikipedia.org/wiki/Device_tree

• DT can contain cycles by means of phandles

• ePAPR specification of DT:

 https://elinux.org/images/c/cf/Power_ePAPR_APPR

OVED_v1.1.pdf

33

Device Tree Example

• arch/arm/boot/dts/arm-realview-eb-a9mp.dts

/dts-v1/;

#include "arm-realview-eb-mp.dtsi"

/ {

 model = "ARM RealView EB Cortex A9 MPCore";

[...]

 cpus {

 #address-cells = <1>;

 #size-cells = <0>;

 enable-method = "arm,realview-smp";

 A9_0: cpu@0 {

 device_type = "cpu";

 compatible = "arm,cortex-a9";

 reg = <0>;

 next-level-cache = <&L2>;

 };

[...]

&pmu {

 interrupt-affinity = <&A9_0>, <&A9_1>, <&A9_2>, <&A9_3>;

};

34

Problem – Variable hardware

• DT started on machines the size of a little fridge

 HW was mostly static

 DT was baked into ROM, optionally modified by bootloader

• DT was good, so it spread

 First PPC, embedded PPC, then ARM …

• There always was slightly variable hardware

 Solved by patching DT in bootloader

 Solved by carrying multiple DTs

 Solved by co-operation of board files and DT

 ^ all that does not scale

35

Problem – Variable hardware – 201x edition

• Come 201x, variable HW became easy to make:

 Cheap devkits with hats, lures, capes, …

 FPGAs and SoC+FPGAs became commonplace …

 => Combinatorial explosion of possible HW configurations

• Solution retaining developers’ sanity

 Describe only the piece of HW that is being added

 Combine these descriptions to create a DT for the system

 Enter DT overlays

36

Device Tree Overlays

• DT: Data structure describing hardware

• DTO: necessary change(s) to the DT to support particular feature

 Example: an expansion board, a hardware quirk,...

• Example DTO:

/dts-v1/;

/plugin/;

/ {

 #address-cells = <1>;

 #size-cells = <0>;

 fragment@0 {

 reg = <0>;

 target-path = "/";

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <0>;

 hello@0 {

 compatible = "hello,dto";

 reg = <0>;

}; }; }; };

37

Advanced DTO example

/dts-v1/;

/plugin/;

[...]

 fragment@2 {

 reg = <2>;

 target-path = "/soc/usb@ffb40000";

 __overlay__ {

[...]

 status = "okay";

 };

 };

 fragment@3 {

 reg = <3>;

 target-path = "/soc/ethernet@ff700000";

 __overlay__ {

[...]

 status = "okay";

 phy-mode = "gmii";

 };

 };

38

DTO Hands-on

• Use pre-prepared meta-dto-microdemo layer

• meta-dto-demo contains:

 Kernel patch with DTO loader with ConfigFS interface

 Kernel config fragment to enable the DTO and loader

 Demo module

 Demo DTO source (hello-dto.dts)

 core-image-dto-microdemo derivative from

core-image-minimal with added DTO examples and DTC

39

DTO Hands-on 1/2

• Add meta-dto-demo to bblayers.conf BBLAYERS:

• Rebuild virtual/kernel and core-image-dto-microdemo

• Start the new image in QEMU

$ ${EDITOR} conf/bblayers.conf

$ bitbake -c cleansstate virtual/kernel

$ bitbake core-image-dto-microdemo

$ runqemu qemuarm

40

DTO Hands-on 2/2

• Compile DTO

• Load DTO

• Unload DTO

$ dtc -I dts -O dtb /lib/firmware/dto/hello-dto.dts \

 /tmp/hello-dto.dtb

$ mkdir /sys/kernel/config/device-tree/overlays/mydto

$ cat /tmp/hello-dto.dtb > \

 /sys/kernel/config/device-tree/overlays/mydto/dtbo

$ rmdir /sys/kernel/config/device-tree/overlays/mydto

41

DTO encore

• DTOs can be used to operate SoC+FPGA hardware

• Done using FPGA manager in Linux

fragment@0 {

 reg = <0>;

 /* controlling bridge */

 target-path = "/soc/fpgamgr@ff706000/bridge@0";

 __overlay__ {

 #address-cells = <1>;

 #size-cells = <1>;

 area@0 {

 compatible = "fpga-area";

 #address-cells = <2>;

 #size-cells = <1>;

 ranges = <0 0x00000000 0xff200000 0x00080000>;

 firmware-name = "fpga/bitstream.rbf";

 fpga_version@0 {

 compatible = "vendor,fpgablock-1.0";

 reg = <0 0x0 0x04>;

 };

Activity Four

Userspace: Advanced Topics

Rudi Streif

(given by David Reyna)

43

See Rudi Streif’s Book on Yocto Project!

• “Embedded Linux Systems with the Yocto Project”,

Hardcover – May 2 2016, Prentice Hall

• Amazon: #10 in Books > Computers & Technology > Hardware > Microprocessors & System

Design > Embedded Systems

https://www.amazon.ca/gp/bestsellers/books/ref=pd_zg_hrsr_b_1_1/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/939082/ref=pd_zg_hrsr_b_1_2/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940426/ref=pd_zg_hrsr_b_1_3/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940478/ref=pd_zg_hrsr_b_1_4/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940478/ref=pd_zg_hrsr_b_1_4/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940482/ref=pd_zg_hrsr_b_1_5_last/143-5315836-9217713

44

What We Are Going To Do

• Most of your development work will likely be developing your own

software packages, building them with the Yocto Project and installing

them into a root file system built with the Yocto Project.

• Let’s look at some typical tasks beyond creating the base recipe:

• Customizing Packaging

• Package Installation Scripts

• System Services

45

Activity Setup

• Initialize the Build Environment (IN A CLEAN SHELL)

• cd /scratch/poky

• source oe-init-build-env build

• Adjust Configuration (DONE FOR YOU)

• vi conf/local.conf

• Build (DONE FOR YOU)

• bitbake -k core-image-base

• Test (login as ‘root’, no password needed)

• runqemu qemuarm nographic

• Exit QEMU with CTRL-A,x

MACHINE = "qemuarm"

DL_DIR ?= "/scratch/downloads"

SSTATE_DIR ?= "/scratch/sstate-cache"

EXTRA_IMAGE_FEATURES ?= "debug-tweaks dbg-pkgs dev-pkgs package-

management"

46

Activity Setup - Continued
• Create Local Devtool Layer “meta-uspapps”

• devtool create-workspace meta-uspapps

• Observe your source file directory

• tree /scratch/src/userspace

/scratch/src/userspace

\-- fibonacci

 |--- fibonacci-app

 | |--- fibonacci-app.c

 | \-- Makefile

 |--- fibonacci-lib

 | |--- fibonacci-app.c

 | |--- fibonacci.c

 | |--- fibonacci.h

 | |--- fibonacci-lib.bb

 | \-- Makefile

 \-- fibonacci-srv

 |--- fibonacci-srv.bb

 |--- fibonacci-srv.init

 |--- fibonacci-srv.service

 |--- fibonacci-srv-tcp

 |--- fibonacci-srv-tcp.c

 |--- fibonacci-srv-unix

 |--- fibonacci-srv-unix.c

 |--- Makefile

 \-- Makefile.all

47

Packaging

• Packaging is the process of putting artifacts from the build output into

one or more packages for installation by a package management

system.

• Packaging is performed by the package management classes:

• package_rpm – RPM style packages

• package_deb – Debian style packages

• package_ipk – IPK package files used by the OPK package manager

• You configure the package management in conf/local.conf:

• You can add more than one of the package classes.

• Only the first one will be used to create the root file system.

• However, this does not install the package manager itself.

• Install the package manager in conf/local.conf:

PACKAGE_CLASSES ?= "package_rpm"

EXTRA_IMAGE_FEATURES ?= "package-management"

48

Package Splitting

• Packaging Splitting is the process of putting artifacts from the build

output into different packages.

• Package splitting allows you to select what you need to control the

footprint of your root file system.

• Package splitting is controlled by the variables:

• PACKAGES – list of package names, default:

• FILES – list of directories and files that belong into the package:

PACKAGES = "${PN}-dbg ${PN}-staticdev ${PN}-dev ${PN}-doc \

 ${PN}-locale ${PACKAGE_BEFORE_PN} ${PN}"

SOLIBS = "*.so.*“

FILES_${PN} = "${bindir}/* ${sbindir}/* ${libexecdir}/* \

 ${libdir}/lib* {SOLIBS} ${sysconfdir} ${sharedstatedir} \

 ${localstatedir} ${base_bindir}/* ${base_sbindir}/* \

 ${base_libdir}/*${SOLIBS} ${base_prefix}/lib/udev/rules.d \

 ${prefix}/lib/udev/rules.d ${datadir}/${BPN}\

 ${libdir}/${BPN}/* ${datadir}/pixmaps \

 ${datadir}/applications ${datadir}/idl ${datadir}/omf \

 ${datadir}/sounds ${libdir}/bonobo/servers"

49

Package Splitting - Continued

• The package classes process the PACKAGES list from left to right,

producing the ${PN}-dbg package first and the ${PN} package last.

• The order is important, since a package consumes the files that are

associated with it.

• The ${PN} package is pretty much the “kitchen sink”: it consumes all

standard leftover artifacts.

• BitBake syntax only allows prepending (+=) or appending (=+) to

variables:

• Prepend PACKAGES – place standard artifacts into different packages

• Append PACKAGES – place any leftover packages in non-standard

installation directories those packages.

• The variable PACKAGE_BEFORE_PN allows you to insert packages

right before the ${PN} package is created.

50

Packaging QA

• The insane class adds plausibility and error checking to the packaging

process.

• You can find a list of the checks in the Reference Manual:
http://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html#ref-classes-insane

• Some of the more common ones:

• already-stripped – debug symbols already stripped

• installed-vs-shipped – checks for artifacts that have not been

packaged

• ldflags – checks if LDFLAGS for cross-linking has been passed

• packages-list – same package has been listed multiple times in
PACKAGES

• Sometimes the checks can get into your way…

• INSANE_SKIP_<packagename> += "<check>"

• Skips <check> for <packagename>.

http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane

51

Example – The Fibonacci Library

• Source code in /scratch/src/userspace/fibonacci/fibonacci-lib

• Builds static and dynamic libraries to calculate the Fibonacci series and an
application to test it.

• Create development environment in the project
• devtool add fibonacci-lib /scratch/src/userspace/fibonacci/fibonacci-

lib

• Build the recipe
• bitbake fibonacci-lib

• Add to your image (conf/local.conf): (vi: EoD = ‘G’)

• Build and test image (exit with CTRL-A,x)

• bitbake core-image-minimal

• runqemu qemuarm nographic

...

root@qemuarm:~# fibonacci

Enter the number of terms: 4

First 4 terms of Fibonacci series are:

0 1 1 2

IMAGE_INSTALL_append = " fibonacci-lib"

52

Example – The Fibonacci Library (continued)

• Edit the recipe meta-uspapps/recipes/fibonacci-lib/fibonacci-lib.bb

and place the fibonacci test application into its own package ${PN}-
examples

• Build and test image

• bitbake core-image-minimal

• runqemu qemuarm nographic

• See the new package (optional):

• find tmp/work -name "*fibonacci-example*“

tmp/work/armv5e-poky-linux-gnueabi/fibonacci-lib/1.0-r0/pkgdata/runtime-reverse/libfibonacci-

examples

tmp/work/armv5e-poky-linux-gnueabi/fibonacci-lib/1.0-r0/deploy-rpms/armv5e/libfibonacci-

examples-1.0-r0.armv5e.rpm

PACKAGE_BEFORE_PN = "${PN}-examples"

FILES_${PN}-examples = "${bindir}/fibonacci"

53

Package Installation Scripts

• Package management systems have
the ability to run scripts before and
after a package is installed, upgraded,
or removed.

• These are typically shell scripts and
they can be provided by the recipe
using these variables:
• pkg_preinst_<packagename>:

Preinstallation script that is run
before the package is installed.

• pkg_postinst_<packagename>:
Postinstallation script that is run after
the package is installed.

• pkg_prerm_<packagename>: Pre-
uninstallation script that is run before
the package is uninstalled.

• pkg_postrm_<packagename>:
Post-uninstallation script that is run
after the package is uninstalled.

pkg_postinst_${PN}() {

#!/bin/sh

shell commands go here

}

pkg_postinst_${PN}() {

#!/bin/sh

if [x"$D" = "x"]; then

 # target execution

else

 # build system execution

fi

}

Conditional Execution

Script Skeleton

54

Example – Conditionally running ldconfig

• The Fibonacci library installs a dynamic library libfibonacci.so.1.0

on the target system in /usr/lib.

• For ld to be able to locate the library it must be added to the ld cache

and its symbolic name (soname) must be linked. That is done by

running ldconfig on the target.

• Add a post installation script to the ${PN} package that only runs

ldconfig when it is run on the target but not when the build system

creates the root file system.

pkg_postinst_${PN}() {

#!/bin/sh

if [x"$D" = "x"]; then

 # target execution

 ldconfig

 exit 0

else

 # build system execution

 exit 1

fi

}

55

Installation for Packaging

• Makefile Installation

• Recipe Installation

• Providing/overriding the do_install task

• The build system defines a series of variables for convenience:

 bindir = "/usr/bin"

 sbindir = "/usr/sbin"

 libdir = "/usr/lib"

 libexecdir = "/usr/lib"

do_install() {

 install –d ${D}${bindir}

 install –m 0755 ${B}/bin/* ${D}{bindir}

}

sysconfdir = "/etc/"

datadir = "/usr/share"

mandir = "/use/share/man"

includedir = "/usr/include"

INSTALL ?= install

.PHONY: install

Install:

 $(INSTALL) -d $(DESTDIR)/usr/bin

 $(INSTALL) -m 0755 $(TARGET) $(DESTDIR)/usr/bin

56

Debugging Packaging

• Check the packaging logfiles in ${WORKDIR}/temp

• Check installation of artifacts in ${WORKDIR}/image

• The do_install task installs the artifacts into this directory.

• If artifacts are missing they are packaged.

• Check packaging artifacts in ${WORKDIR}/package

• This where the artifacts are staged for packaging, including the ones

created for the debug packages.

• Check package splitting in ${WORKDIR}/packages-split

• Packages and their content are staged here by package name before they

are wrapped by the package manager.

• Allows you to verify if the artifacts have indeed been placed into the

correct package.

• Check created packages in ${WORKDIR}/deploy-<pkgmgr>

57

Package Architecture

• The build system distinguishes packages by their hardware
dependencies into three main categories:

• Tune – Generic CPU architecture such as core2_32, corei7, armv7, etc.
This is the default and typically appropriate for userspace packages.

• Machine – Specific machine architecture. Appropriate for packages that
require particular hardware features of a machine. Typically applicable to
kernel, drivers, and bootloader.

• All – Package applies to all architectures such as shell scripts, managed
runtime code (Python, Lua, Java, …), configuration files, etc.

• Package architecture is controlled by the PACKAGE_ARCH variable:

• Tune (default) – PACKAGE_ARCH = "${TUNE_PKGARCH}"

• Machine – PACKAGE_ARCH = "${MACHINE_ARCH}"

• All – inherit allarch

• Note: Package architecture does not simply determine into what
category a package is placed but determines compiler and linker flags
and other build options.

58

System Services

• If your software package is a system service that eventually needs to be
started when the system boots you need to add the scripts and service
files.

• SysVInit
• Inherit update-rc.d class.

• INITSCRIPT_PACKAGES - List of packages that contain the init scripts for this
software package. This variable is optional and defaults to
INITSCRIPT_PACKAGES = "${PN}".

• INITSCRIPT_NAME - The name of the init script.

• INITSCRIPT_PARAMS - The parameters passed to update-rc.d. This can be
a string such as "defaults 80 20" to start the service when entering run
levels 2, 3, 4, and 5 and stop it from entering run levels 0, 1, and 6.

• Systemd
• Inherit systemd class.

• SYSTEMD_PACKAGES - List of packages that contain the systemd service files
for the software package. This variable is optional and defaults to
SYSTEMD_PACKAGES = "${PN}".

• SYSTEMD_SERVICE - The name of the service file.

59

Example – The Fibonacci Server

• Source code in /scratch/src/userspace/fibonacci/fibonacci-srv

• Builds a TCP socket server listening on port 9999 for the number of terms and responds with the
list of Fibonacci terms.

• Create development environment
• cd /scratch/working/build

• devtool add fibonacci-srv /scratch/src/userspace/fibonacci/fibonacci-srv

• Add system service startup to the recipe
meta-uspapps/recipes/fibonacci-srv/fibonacci-srv.bb

• Build the recipe
• bitbake fibonacci-lib

• Add to your image (conf/local.conf):

• Build and test image
• bitbake core-image-minimal

• runqemu qemuarm nographic

• nc localhost 9999

IMAGE_INSTALL_append = " fibonacci-srv"

inherit update-rc.d systemd

INITSCRIPT_NAME = "fibonacci-srv"

INITSCRIPT_PARAMS = "start 99 3 5 . stop 20 0 1 2 6 ."

SYSTEMD_SERVICE = "fibonacci-srv.service"

60

Changing the System Manager

• SysVInit is the default system manager for the Poky

distribution.

• To use systemd add it to your conf/local.conf file, or

better, to your distribution configuration:

• If you exclusively want to use systemd, you can remove

SysVInit from you root file system image with:

DISTRO_FEATURES_append = " systemd"

VIRTUAL-RUNTIME_init_manager = "systemd"

DISTRO_FEATURES_BACKFILL_CONSIDERED = "sysvinit"

VIRTUAL-RUNTIME_initscripts = ""

Activity Five

License Compliance and Auditing

Beth ‘pidge’ Flanagan and Paul Barker

Togán Labs Ltd.

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

Activity Six

CROPS

Tim Orling, Brian Avery, Randy Witt, David Reyna

95

CROPS: Containers for Yocto Project

• CROss PlatformS (CROPS)* provides a consistent

developer experience across Windows, Mac OS X and

Linux distros through the use of containers

• Why Containers?

• Avoid host contamination

• Easy route to multiple OS support, including Linux!

• Repeatable builds

• Fewer Linux distros to test

• A path to tools in the cloud

*The instructor also thinks of it as Containers Run Other People’s Software

96

CROPS: Available Today
• crops/extsdk-container

• Container that can support Extensible SDKs

• Also supports standard SDKs

• crops/toaster

• Latest released version of toaster/poky currently pyro

• crops/toaster-master

• Keeps up with the current master of toaster/poky, kicked off via webhook

so it's quite up to date.

• crops/poky

• This is an Ubuntu (or other distro) container with the necessary packages

to run poky installed, but not poky itself.

• To run poky, you need a copy of it on your file system which you then map

into the container.

• This will work equally well for poky or an install of oe-core.

97

CROPS: Setup Docker

• Install Docker

• For Linux, Docker is typically available via the distro package

manager, otherwisw go to the Docker web site:

https://docs.docker.com/engine/installation/linux/

• For Windows and Mac, follow the CROPS Instructions here:

https://github.com/crops/docker-win-mac-docs/wiki

• Note: crops/samba container

• One of the nice features for windows/mac is the

crops/samba container that exposes the docker volume to

the host side via samba/cifs . This works around the fact that

neither the windows nor mac filesystems have sufficient

features to support a bitbake build. The docker volume is

persistent just like a directory on a linux host would be.

https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki

98

CROPS: eSDK First Time

• Follow the instructions at:
https://github.com/crops/extsdk-container

• Linux:
$ docker run --rm -it -v /home/myuser/sdkstuff:/workdir

crops/extsdk-container --url

http://someserver/extensible_sdk_installer.sh

• Windows:
$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container

--url http://someserver/extensible_sdk_installer.sh

• Mac OS X:
$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container

--url http://someserver/extensible_sdk_installer.sh

https://github.com/crops/extsdk-container/blob/master/README.md
https://github.com/crops/extsdk-container/blob/master/README.md
https://github.com/crops/extsdk-container/blob/master/README.md
http://someserver/extensible_sdk_installer.sh
http://someserver/extensible_sdk_installer.sh
http://someserver/extensible_sdk_installer.sh
http://someserver/extensible_sdk_installer.sh

99

CROPS: eSDK “--url” command

• The “--url” tells the CROPS eSDK container where to

find the eSDK

• That can be a website or you could copy into the

container’s workdir, and use:
 --url=file:///workdir/extensible_sdk_installer.sh
or even –url=/workdir/extensible_sdk_installer.sh

• On Mac OS X or Windows, that would be provided via

the Samba connection

• A useful CROPS eSDK command is “--help”

• This will print out all the startup options for the container.

file://workdir/extensible_sdk_installer.sh
file://workdir/extensible_sdk_installer.sh
file://workdir/extensible_sdk_installer.sh

100

CROPS: Example eSDK on Mac OS X

• The first time, follow the CROPS Mac OS X install

instructions

• Download the eSDK:

• wget http://

• Create volume and run the samba container:
$ docker volume create --name myvolume

$ docker run -it --rm -v myvolume:/workdir busybox \

 chown -R 1000:1000 /workdir

$ docker create -t -p 445:445 --name samba -v myvolume:/workdir crops/samba

$ docker start samba

$ wget http://downloads.yoctoproject.org/releases/yocto/milestones/\

yocto-2.4_M3/toolchain/x86_64/ \

poky-glibc-x86_64-core-image-sato-armv5e-toolchain-ext-2.3.sh

101

CROPS: Example eSDK on Mac OS X

• Mac OS X specific workaround (not on Windows):

• OS X will not let you connect to a locally running samba

share. Therefore, create an alias for 127.0.0.1 of 127.0.0.2.

• Open the workdir with file browser:

• Open Finder, then hit 'Command-K'. In the "Server Address"

box type smb://127.0.0.2/workdir and click "Connect".

• Copy the eSDK installer to the workdir:

$ sudo ifconfig lo0 127.0.0.2 alias up

$ cp ~/Downloads/poky-glibc-x86_64-core-image-sato-armv5e-toolchain-ext-2.3.sh \

 /Volumes/workdir/

102

CROPS: Example eSDK on Mac OS X

• Run the container:

• In Finder view, right click on hello.c and edit in your

favorite editor (e.g. Visual Studio Code)

$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container \

--url file:///workdir/poky-glibc-x86_64-core-image-sato-armv5e-toolchain-ext-2.3.sh

workdir$. ./environment-setup-armv5e-poky-linux-gnueabi

workdir$ touch hello.c

#include <stdio.h>

int main(void)

{

 printf("Hello, Prague 2017!\n");

 return 0;

}

103

CROPS: Example eSDK on Mac OS X

• Compile and examine:

/workdir$ $CC hello.c

/workdir$ file a.out

a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked,

interpreter /lib/ld-linux.so.3, for GNU/Linux 3.2.0,

BuildID[sha1]=17bdf1d27076e3e579c20007f60397c96984a012, not stripped

/workdir$ exit

104

CROPS: Example eSDK on Mac OS X, Second Time

• When you close and then reopen Docker, you will

need to restart samba

$ # Restart the Samba container

$ docker start samba

$

$ # The eSDK is already extracted in the eSDK container, so no “--url”

$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container

105

CROPS: Example Toaster on Mac

• Run the container:

$docker run --rm -it -v myvol:/wd -p 127.0.0.1:12000:8000 crops/toaster \

--workdir=/wd

Shell environment set up for builds. ###

…

Check if toaster can listen on 0.0.0.0:8000

OK

…

Running migrations:

 No migrations to apply.

Starting webserver...

Webserver address: http://0.0.0.0:8000/

Successful start.

toasteruser@f07ebe8b10fe:/workdir/build$

106

CROPS: Example Poky on Mac

• Run the container:

docker run --rm -it -v pokyvol:/wd crops/poky --workdir=/wd

pokyuser@5451bf7edfec:/wd$ ls

pokyuser@5451bf7edfec:/wd$ git clone git://git.yoctoproject.org/poky

Cloning into 'poky'...

remote: Counting objects: 354342, done.

remote: Compressing objects: 100% (85618/85618), done.

remote: Total 354342 (delta 263023), reused 353729 (delta 262410)

Receiving objects: 100% (354342/354342), 130.36 MiB | 11.28 MiB/s, done.

Resolving deltas: 100% (263023/263023), done.

Checking connectivity... done.

pokyuser@5451bf7edfec:/wd$. ./poky/oe-init-build-env

pokyuser@5451bf7edfec:/wd/build$

107

CROPS: Toaster and Poky

• The CROPS Poky can be found here:

 https://hub.docker.com/r/crops/poky/

• The CROPS Toaster release can be found here:

 https://hub.docker.com/r/crops/toaster/

• The CROPS extsdk-container can be found here:

 https://hub.docker.com/r/crops/extsdk-container/

https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/

108

CROPS: Future

• Target for 2.5 is an Eclipse environment where no

Yocto Project specific plugin is needed. We are

actively working with upstream Linux Tools/Docker

Tools and CDT (C/C++ Development Tools).

• The Yocto Project magic will be in the metadata inside

the toolchain container.

• This approach is also expected enable remote/Cloud

Docker container instances.

• Some of the required upstream functionality expected

to be in a December point release of CDT & Linux

Tools.

109

CROPS: Reference

• You can use the Docker infrastructure (docker commit

to an image, docker save to a tar.gz) to capture your

container and pass it to others for exact analysis, for

example for errors and regressions.

110

CROPS: Call to Action

• Users are typically able to get Docker and CROPs up

and running on a Mac OS X or Windows host in less

than 30 minutes, most of that is the Docker and

CROPS container installation time.

• See if you can do that as fast on your host today or

this week, and build and run “hello.c”.

111

Reference

• The CROPs community is very active. Here is how you can

update your cached containers:

• Here is a quick “hello.c” for your eSDK container

• Lead Developers:

randy.e.witt@intel.com

brian.avery@intel.com

#include <stdio.h>

int main(void)

{

 printf("Hello Berlin 2016!\n");

 return 0;

}

docker pull crops/extsdk-container

docker pull crops/poky

docker pull crops/toaster

mailto:randy.e.witt@intel.com
mailto:brian.avery@intel.com

112

Resources

• Randy Witt’s ELC Presentation (this is a must see):

• https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf

• https://www.youtube.com/watch?v=JXHLAWveh7Y

• Yocto Project Dev Day Portland, 2017 Presentation (Windows):

• https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portl

and.pdf

• Github:

• https://github.com/crops

• Docker Hub:

• https://hub.docker.com/r/crops

• Freenode IRC:

• #crops

https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://www.youtube.com/watch?v=JXHLAWveh7Y
https://www.youtube.com/watch?v=JXHLAWveh7Y
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://github.com/crops
https://github.com/crops
https://hub.docker.com/r/crops
https://hub.docker.com/r/crops

Activity Seven

Maintaining Your Yocto Project Based Distribution

Scott Murray

Activity Eight

Kernel Modules with eSDKs

Marco Cavallini

115

Kernel modules with eSDKs – Overview

• The Extensible SDK (eSDK) is a portable and

standalone development environment , basically an

SDK with an added bitbake executive via devtool.

• The “devtool” is a collection of tools to help

development, in particular user space development.

• We can use devtool to manage a new kernel module:

• Like normal applications is possible to import and create a

wrapper recipe to manage the kernel module with eSDKs.

116

Kernel modules with eSDKs –
Compiling a kernel module

• We have two choices

• Out of the kernel tree

• When the code is in a different directory outside of the

kernel source tree

• Inside the kernel tree

• When the code is managed by a KConfig and a Makefile

into a kernel directory

117

Kernel modules with eSDKs –
Pro and Cons of a module outside the kernel tree

● When the code is outside of the kernel source tree in

a different directory

● Advantages

– Might be easier to handle modifications than modify it into

the kernel itself

● Drawbacks

– Not integrated to the kernel configuration/compilation

process

– Needs to be built separately

– The driver cannot be built statically

118

Kernel modules with eSDKs –
Pro and Cons of a module inside the kernel tree

● When the code is inside the same directory tree of

the kernel sources

● Advantages

– Well integrated into the kernel configuration and

compilation process

– The driver can be built statically if needed

● Drawbacks

– Bigger kernel size

– Slower boot time

119

Kernel modules with eSDKs – The source code

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

printk("When half way through the journey of our life\n");

return 0;

}

static void __exit hello_exit(void)

{

printk("I found that I was in a gloomy wood\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module from the Divine Comedy");

MODULE_AUTHOR("Dante Alighieri");

120

Kernel modules with eSDKs – The Makefile

obj-m += hellokernel.o

SRC := $(shell pwd)

all:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules

modules_install:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

• KERNEL_SRC is the location of the kernel sources.

• This variable is set to the value of the STAGING_KERNEL_DIR

within the module class (module.bbclass)

• Sources available on https://github.com/koansoftware/simplest-

kernel-module.git

121

Kernel modules with eSDKs – Devtool setup

• Start a new Shell! Otherwise, the existing bitbake environment can cause

unexpected results

• Here is how the eSDK was prepared for this class account:

• This installed the eSDK into:

/scratch/sdk/qemuarm

< DO NOT ENTER THE FOLLOWING COMMANDS : ALREADY EXECUTED >

$ cd /scratch/working/build/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-armv5e-toolchain-ext-2.4.sh \
 -d /scratch/sdk/qemuarm -y

122

Kernel modules with eSDKs – Overview

• Starting from now we are using the eSDK and not the project

• During this exercise we using two different machines

• The HOST containing the eSDK (providing devtool)

• The TARGET running the final qemuarm image

Host

eSDK:~$

Target

root@qemuarm:~$

123

Kernel modules with eSDKs – Globalsetup

• Open two terminal windows and setup the eSDK environment in each

one

• SDK environment now set up

• Additionally you may now run devtool to perform development tasks.

• Run devtool --help for further details

$ source /scratch/sdk/qemuarm/environment-setup-armv5e-poky-linux-gnueabi

124

Kernel modules with eSDKs – build the target image

• Open two terminal windows and setup the eSDK environment in each

one

• This will create a new image into:

/scratch/sdk/qemuarm/tmp/deploy/images/qemuarm

$ devtool build-image

125

Kernel modules with eSDKs – build the target image

• Run the image to check if everything is OK

• This will run the Qemu machine in the TARGET shell you were using

• Login using user : root (no password required)

$ runqemu qemuarm nographic

126

Kernel modules with eSDKs – Hooking a new
module into the build

• Run the devtool to add a new recipe (on the HOST side)

• This generates a minimal recipe in the workspace layer

• This adds EXTERNALSRC in an

workspace/appends/simplestmodule_git.bbappend file that points

to the sources

• In other words, the source tree stays where it is, devtool just

creates a wrapper recipe that points to it

• Note: this does not add your image to the original build engineer’s image, which

requires changing the platform project’s conf/local.conf

$ devtool add --version 1.0 simplestmodule \
 /scratch/src/kmod/simplest-kernel-module/

127

After the add

Workspace layer layout

$ tree /scratch/sdk/qemuarm/workspace/

/scratch/sdk/qemuarm/workspace/

├── appends

│ └── simplestmodule_git.bbappend

├── conf

│ └── layer.conf

├── README

└── recipes

 └── simplestmodule

 └── simplestmodule_git.bb

128

Kernel modules with eSDKs – Build the Module

• Build the new recipe (on the HOST side)

This will create the simplestmodule.ko kernel module

This downloads the kernel sources (already downloaded for you):

 linux-yocto-4.12.12+gitAUTOINC+eda4d18ce4_67b62d8d7b-r0 do_fetch

$ devtool build simplemodule

129

Kernel modules with eSDKs – Deploy the Module

• Get the target’s IP address from the target serial console

• root@qemuarm:~# ifconfig

• In the eSDK (HOST) shell, deploy the output

 (the target’s ip address may change)

• NOTE: the ‘-s’ option will note any ssh keygen issues, allowing you to

(for example) remove/add this IP address to the known hosts table

$ devtool deploy-target -s simplestmodule root@192.168.7.2

130

Kernel modules with eSDKs – Deploy Details

• In the target (qemuarm), observe the result of deployment

devtool_deploy.list 100% 108 0.1KB/s 00:00

devtool_deploy.sh 100% 1017 1.0KB/s 00:00

./

./lib/

./lib/modules/

./lib/modules/4.12.12-yocto-standard/

./lib/modules/4.12.12-yocto-standard/extra/

./lib/modules/4.12.12-yocto-standard/extra/hellokernel.ko

./usr/

./usr/include/

./usr/include/simplestmodule/

./usr/include/simplestmodule/Module.symvers

./etc/

./etc/modprobe.d/

./etc/modules-load.d/

NOTE: Successfully deployed

/scratch/sdk/qemuarm/tmp/work/qemuarm-poky-linux-gnueabi/simplestmodule/

131

Kernel modules with eSDKs – Load the Module

• In the target (qemuarm), load the module and observe the results

root@qemuarm:~# depmod -a

root@qemuarm:~# modprobe hellokernel

[874.941880] hellokernel: loading out-of-tree module taints kernel.

[874.960165] When half way through the journey of our life

root@qemuarm:~# lsmod

Module Size Used by

hellokernel 929 0

nfsd 271348 11

132

Kernel modules with eSDKs – Unload the Module

• In the target (qemuarm), unload the module

root@qemuarm:~# modprobe -r hellokernel

[36.005902] I found that I was in a gloomy wood

root@qemuarm:~# lsmod

Module Size Used by

nfsd 271348 11

133

Kernel modules with eSDKs – automatic load of the
module at boot

• In the target (qemuarm), edit the file below and add a new line containing

the module name ‘hellokernel’

• • Then reboot the Qemu machine and verify

root@qemuarm:~# vi /etc/modules-load/hello.conf

< insert the following line and save >

hellokernel

root@qemuarm:~# reboot

Activity Nine

Analytics and the Event System

David Reyna

135

Analytics and the Event System - Overview

• The Event System

• Example 1: Custom command line analytic tool

• Example 2: Custom Event Interface (knice)

• Example 3: Custom event types

• Example 4: Debugging coincident data in bitbake

• Example 5: Toaster

136

Introduction
• Thesis:

• The bitbake event system, together with the event database that comes

with Toaster, can be used to generate and provide access to analytical

data and provide a new unique toolset to solve difficult problems

• What we will cover today:

• The problem space for extracting and analyzing data

• Introduce the bitbake event system, interfaces

• Event Examples: Toaster, CLI tools, customized bitbake UI

• Resources

• The full presentation can be found here:

• http://events.linuxfoundation.org/sites/events/files/slides/BitbakeAnalytics_

ELC_Portland.pdf

• What that presentation additionally covers:

• Deep dive on the event system code and components

• Event database, database schema, custom events, custom tools, use

cases, gotchas

137

The Problem Space (as I see it)

• Types of addressable problems with analytics:

• Issues with time or coincident sensitivity

• Issues with transient data values

• Issues with transient UFOs (Unidentified Failing Objects)

• Issues with trends (size, time, cache misses, scaling)

• If the problem is a needle, where is the haystack to look in

• We need:

• Easy access to deep data, time, and ordering

• Reliable interaction with bitbake

• Easy access to the data with tools, both provided and custom

• Ability to acquire long term data, from a day to many months

• Keep bitbake as pristine as possible

• My builds are working, do I need this?

• Excellent, you are in good shape! However, if they stop working or when

you do new work or try to scale, here are additional tools for your toolbox

138

The Problem Space (2)

• Well known and documented data from bitbake builds:

• Logs (Build/Error logs)

• Artifacts (Kernel, Images, SDKs)

• Manifests (Image content, Licenses)

• Variables (bitbake -e)

• Dependencies

• However…

• These only capture the final results of the build, not how the build progressed nor

the intermediate or analytical information.

• It is hard for example to correlate logs with other logs, let alone with other builds

• The Answer!

• The bitbake event system

• The bitbake event database

• Events are easy to create, fire, listen to, and catch

• There are more than 40 existing event types

• Uses IPC over python xmlrpc sockets, with automatic data marshalling

139

Toaster Analytics – Intermediate Data Example

• The Toaster database/GUI can for example display the intermediate

values of bitbake variables, specifically each variable’s modification

history down to the file and line.

140

Overview of Available Events

• BuildInit|BuildCompleted|BuildStarted

• ConfigParsed|RecipeParsed

• ParseCompleted|ParseProgress|ParseStarted

• MultipleProviders|NoProvider

• runQueueTaskCompleted|runQueueTaskFailed|runQueueTaskSkipped|

 runQueueTaskStarted

• TaskBase|TaskFailed|TaskFailedSilent|TaskStarted|

 TaskSucceeded

• sceneQueueTaskCompleted|sceneQueueTaskFailed|sceneQueueTaskStarted

• CacheLoadCompleted|CacheLoadProgress|CacheLoadStarted

• TreeDataPreparationStarted|TreeDataPreparationCompleted

• DepTreeGenerated|SanityCheck|SanityCheckPassed

• MetadataEvent

• LogExecTTY|LogRecord

• CommandCompleted|CommandExit|CommandFailed

• CookerExit

141

Event Clients (you are already an event user!)

• Bitbake actually runs in a separate context, and expects an event

client (called a “UI") to display bitbake's status and output

• Here are the existing bitbake event clients:

• Knotty: this is the default bitbake command line user interface that

you know and love. It uses events to display the famous dynamic

task list, and to show the various progress bars

• Toaster: this is the bitbake GUI, which provides both a full event

database and a full feature web interface. We will be using this as

our primary example since it contains the most extensive

implementation and support for events

• Depexp: this executes a bitbake command to extract dependency

data events, and then uses a GTK user interface to interact with it

• Ncurses: this provides a simple ncurses-based terminal UI

142

Event Database

• The event database is built into Toaster to maintain persistent build data

• It can however just as easily be used directly with command line scripts

or other SQL compatible tools

Bitbake

Event Database (SQL)

Toaster GUI Server

Toaster Event Client

User Web Client

Knotty Event Client

User Console

User Console

Python Script

143

Example Event Database with CI Builders

• If you enable the Toaster UI in a CI system, you can additionally get the

event artifacts together with your build artifacts (you will definitely need

to select a production level database)

Bitbake

Event Database (SQL)

Toaster Event Client Knotty Event Client

Continuous Integration Build System

Lost

event

data

144

Adding Build Data to the Event Database
 • There are two easy ways to get build data into the event

database

• Create and execute your builds from within the Toaster GUI

• Start Toaster, and run your command line builds in that environment

• The ‘source toaster’ performs these tasks

• Creates the event database if not present, applies any schema updates

• Starts the web client (this can be ignored for command line usage)

• Sets the command line environment to use Toaster as the UI for bitbake

(“BITBAKE_UI”)

 $ cd /scratch

 $ source poky/oe-init-build-env

 $ source toaster start webport=0.0.0.0:8000 # local only: “localhost:8000”

 $ firefox localhost:8000 # here, connect browser from your using Toaster URL

 $. Poky/oe-init-build-env

 $ source toaster start webport=0.0.0.0:8000

 $ bitbake <whatever>

145

Analytics and the Event System - Overview

• The Event System

• Example 1: Custom command line analytic tool

• Example 2: Custom Event Interface (knice)

• Example 3: Custom event types

• Example 4: Debugging coincident data in bitbake

• Example 5: Toaster

146

Minimal Event Database Python Script
 • Accessing the data in the event database is very simple. In this example we will print the data

from the first-most Build record, and also look up and print the associated Target record

$ cat /scratch/src/events/sample_toaster_db_read.py
#!/usr/bin/env python3

import sqlite3

conn = sqlite3.connect('toaster.sqlite')

c = conn.cursor()

c.execute("SELECT * FROM orm_build")

build=c.fetchone()

print('Build=%s' % str(build))

c.execute("SELECT * FROM orm_target where build_id = '%s'" % build[0])

print('Target=%s' % str(c.fetchone()))

$

$ /scratch/src/events/sample_toaster_db_read.py
Build=(1, 'qemux86-64', 'poky', '2.2.1', '2017-02-12 23:55:52.137355', \

'2017-02-13 00:16:30.794711', 0, '/…/build_20170212_235552.805.log', \

'1.32.0', 1, 1478, 1478, '20170212235604')

Target=(1, 'core-image-base', '', 1, 0, ‘/…/license.manifest', 1, \

'/…/core-image-base-qemux86-64-20170212235604.rootfs.manifest')$

147

Full Feature Event Database Python Script

• In this section we will work with an example python

application that extracts and analyzes event data

• Specifically, we will attempt to investigate the

question:

“How exactly do the tasks of a build overlap execution with other

tasks, and on a higher level how to recipes overlap execution

with other recipes, plus what data can extract around this

question”

• While this may not be a deep problem, and there are certainly OE

tools that already provide similar information (e.g. pybootchart),

the point is that (a) this was very easy and fast to write, and (b)

you can now fully customize the analysis and output to your

needs and desires.

148

Task and Recipe Build Analysis Script
 • Here is the list of available commands and features

$ more /scratch/src/events/event_overlap.py

see db setup and schema info

$ /scratch/src/events/event_overlap.py --help
Commands: ?
 ? : show help

 b,build [build_id] : show or select builds

 d,data : show histogram data

 t,task [task] : show task database

 r,recipe [recipe] : show recipes database

 e,events [task] : show task time events

 E,Events [recipe] : show recipe time events

 o,overlap [task|0|n] : show task|zero|n_max execution overlaps

 O,Overlap [recipe|0|n] : show recipe|zero|n_max execution overlaps

 g,graph [task] [> file] : graph task execution overlap

 G,Graph [recipe] [> file] : graph recipe execution overlap

 h,html [task] [> file] : HTML graph task execution overlap [to file]

 H,Html [recipe] [> file] : HTML graph recipe execution overlap [to file]

 q,quit : quit

Examples:

 * Recipe/task filters accept wild cards, like 'native-*, '*-lib*'

 * Recipe/task filters get an automatic wild card at the end

 * Task names are in the form 'recipe:task', so 'acl*patch'

 will specifically match the 'acl*:do_patch' task

 * Use 'o 2' for the tasks in the two highest overlap count sets

 * Use 'O 0' for the recipes with zero overlaps

149

Histogram of Parallel Task/Recipe Execution (‘d’)

Commands: d
Histogram:For each task, max number of tasks executing in parallel

 0 1 2 3 4 5 6 7 8 9

 --

 0) 0 621 16 22 50 49 56 83 94 45

 10) 57 82 87 81 47 56 58 62 64 88

 20) 121 182 268 221 148

Histogram:For each recipe's task set, max number of recipes executing in parallel

 0 1 2 3 4 5 6 7 8 9

 --

 0) 0 5 1 1 1 1 1 1 3 3

 10) 1 2 2 2 2 1 1 3 1 6

 20) 1 1 2 1 1 2 2 1 1 1

 30) 1 1 2 2 1 3 1 2 2 1

 40) 1 1 1 1 1 1 1 1 3 1

 50) 1 2 4 2 2 1 1 1 1 2

 60) 1 2 1 1 1 2 1 1 1 2

 70) 1 1 2 2 2 2 1 3 3 1

 80) 3 2 1 1 1 10 7 8 8 8

 90) 7 7 2 2 3 2 2 1 1 2

100) 2 1 1 1 2 2 1 3 2 3

110) 2 1 2 1 1 1 1 2 1 1

120) 2 1 1 2 1 1 1 2 1 2

130) 1 1 1 1

150

Histogram of Overlapping Task/Recipe Execution
 …
Histogram:For each task, max number of tasks that overlap its build

 0 1 2 3 4 5 6 7 8 9

 --

 0) 614 9 10 29 28 42 46 55 51 47

10) 56 52 48 59 28 33 63 29 43 60

20) 60 94 119 223 105 95 53 57 36 40

30) 20 26 15 17 13 8 11 9 9 2

40) 7 10 9 7 3 6 6 3 6 6

50) 6 6 6 2 2 5 3 1 3 1

60) 4 2 5 1 2 2 1 2 3 5

... (sparse) ...

980) 0 0 1

Histogram:For each recipe's task set, max number of recipes that overlap its build

 0 1 2 3 4 5 6 7 8 9

 --

 0) 67 0 0 0 0 0 0 0 0 0

 10) 0 0 0 0 0 0 0 0 0 0

... (all zeros) ...

 80) 0 0 0 0 5 1 1 8 4 1

 90) 3 2 0 1 4 4 3 0 0 0

100) 0 0 0 0 0 0 2 1 0 0

110) 2 0 1 2 0 0 3 0 1 2

120) 0 0 0 0 0 0 0 0 2 0

130) 0 26 8 5 2 6 5 0 0 1

... (sparse) ...

170) 0 4 0 0 0 0 0 0 0 0

180) 0 0 0 0 0 0 69

151

Initial Results

• Here are some initial results when examining a “core-image-

minimal” project with Task Count=2658 and Recipe Count=254

• We have as many as 148 tasks being able to run with all 24 available

threads used

• There were 621 tasks that ran solo

• There were zero recipes that ran solo

• There was one task “linux-yocto:do_fetch” whose execution overlapped

with 983 other tasks; the second most overlap was “python3-

native:do_configure” with an overlap count of 798

• There were 69 recipes that overlaps with 186 other recipes, with the next

highest overlap being 4 recipes that overlap with 171 other recipes

• The below sample HTML output page on task overlaps shows the

amount of information available, with the recipe page too large to show

in this context

152

Initial Results

• Let us see the available builds:

• Select the minimal build #4

• Run the commands d,t,r,o,O,g,G to get a sense of the minimal

outputs

Command: b
List of available builds:

 BuildId=1) CompletedOn=2017-02-13 00:16:30.794711, Outcome=SUCCEEDED,

 Project=Command line builds, Target=core-image-base, Task=''

 BuildId=2) CompletedOn=2017-02-13 00:46:40.724932, Outcome=FAILED,

 Project=Command line builds, Target=core-image-base, Task=populate_sdk_ext

 BuildId=3) CompletedOn=2017-02-13 00:46:26.513568, Outcome=SUCCEEDED,

 Project=Command line builds, Target=core-image-base, Task=''

 BuildId=4) CompletedOn=2017-02-23 09:02:31.109727, Outcome=SUCCEEDED,

 Project=Command line builds, Target=quilt-native, Task=''

Command: b 4
Fetching build #4

Build: CompletedOn=2017-02-23 09:02:31.109727, Outcome=SUCCEEDED,

 Project='Command line builds‘ Target='quilt-native', Task='', Machine='qemux86-64'

Success: build #4, Task Count=9, Recipe Count=1

153

Initial Results

• Now select the large build (#1) and explore. We shall use the

recipe filter ‘zlib’ to limit the output:

•

• Make sure your window is very wide, and then run this command

to see a graph of the task overlaps for zlib:

Command: b 1

Command: o zlib

Command: e zlib

Command: t zlib

Command: r zlib

Command: o zlib

Command: O 0

Command: g zlib

154

Sample HTML Output of Task Overlap

155

Analytics and the Event System - Overview

• The Event System

• Example 1: Custom command line analytic tool

• Example 2: Custom Event Interface (knice)

• Example 3: Custom event types

• Example 4: Debugging coincident data in bitbake

• Example 5: Toaster

156

Custom Event UI

• If the knotty UI is too simple (since it does not collect data) and the

Toaster UI too large for your analytic needs, you can make your own

bitbake UI and have it handle specific events as you need. Here is a

simple tutorial on how to do that.

• What we will do is start with the “knotty” UI, and then customize it as

the “knice” UI.

• We make a simple change:

• Now we run it:

$ pushd ../bitbake/lib/bb/ui

$ cp knotty.py knice.py

$ sed –i –e "s/notty/nice/g" knice.py

$ vi knice.py

-print("Nothing to do. Use 'bitbake world' to build everything, \

 or run 'bitbake --help' for usage information.")

+print(“NICE: Nothing to do. Use 'bitbake world' to build everything, \

 or run 'bitbake --help' for usage information.")

$ popd

$ bitbake -u knice
NICE: Nothing to do. Use 'bitbake world' to build everything, or run

'bitbake --help' for usage information.

157

Custom Event UI (2)

• Now let us instrument an event by updating “knice.py”.

• First, let us add "bb.event.DepTreeGenerated“ to the event list

• Now let us add a print statement to the otherwise empty

"bb.event.DepTreeGenerated“ handler code

• Now we run it and see our code run!

$ vi ../bitbake/lib/bb/ui/knice.py

- "bb.event.ProcessFinished"]

+ "bb.event.ProcessFinished","bb.event.DepTreeGenerated"]

 if isinstance(event, bb.event.DepTreeGenerated):

+ logger.info("NICE: bb.event.DepTreeGenerated received!")

 continue

[build]$ bitbake -u knice quilt-native [| grep NICE]

...

NOTE: NICE: bb.event.DepTreeGenerated received! | ETA: 0:00:00

...

158

Resources

• Source code and example event database

• This is available as part of the Yocto Project Developer Day Advanced

Class (see https://www.yoctoproject.org/yocto-project-dev-day-north-

america-2017, and https://wiki.yoctoproject.org/wiki/DevDay_US_2017)

• Here is the Toaster documentation, and Youtube video!
• http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-

manual.html#toaster-manual-start

• https://youtu.be/BlXdOYLgPxA

• Basic information about bitbake UI’s
• http://elinux.org/Bitbake_Cheat_Sheet

• Here is design information on the event model for Toaster
• https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster

• Here is the original design information on Toaster and bitbake

communication
• https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications

https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://wiki.yoctoproject.org/wiki/DevDay_US_2017
https://wiki.yoctoproject.org/wiki/DevDay_US_2017
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
https://youtu.be/BlXdOYLgPxA
https://youtu.be/BlXdOYLgPxA
https://youtu.be/BlXdOYLgPxA
http://elinux.org/Bitbake_Cheat_Sheet
http://elinux.org/Bitbake_Cheat_Sheet
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications

159

Analytics and the Event System - Overview

• The Event System

• Example 1: Custom command line analytic tool

• Example 2: Custom Event Interface (knice)

• Example 3: Custom event types

• Example 4: Debugging coincident data in bitbake

• Example 5: Toaster

160

Custom events

• Normally, for a custom event you merely sub-class the event

class or some other existing class, and add your new content

• In this example, we show how we can easily extend

"MetadataEvent" and use it on the fly, since the sub-event 'type'

is an arbitrary string and the data load is a simple dictionary.

• Event creation:

• Event handler:

my_event_data = {

 "TOOLCHAIN_OUTPUTNAME": d.getVar("TOOLCHAIN_OUTPUTNAME")

}

bb.event.fire(bb.event.MetadataEvent("MyMetaEvent", my_event_data), d)

if isinstance(event, bb.event.MetadataEvent):

 if event.type == "MyMetaEvent":

 my_toochain = event.data["TOOLCHAIN_OUTPUTNAME"]

161

Analytics and the Event System - Overview

• The Event System

• Example 1: Custom command line analytic tool

• Example 2: Custom Event Interface (knice)

• Example 3: Custom event types

• Example 4: Debugging coincident data in bitbake

• Example 5: Toaster

162

Using Events for debugging bitbake

• You can also use the event system in debugging bitbake or your

classes.

• Example 1: The quintessential example is to use “logger.info()” to insert

print statements into the code. This is implemented as an event,

meaning that will it be passed to the correct external UI and not lost in

some random log file.

• Example 2: The ESDK file used to be copied to the build’s “deploy/sdk”

directory as part of the task “populate_sdk_ext”. However, it is

somehow happening later, and it is hard reading the code to determine

when and where that is now occurring. We can use the event stream to

help narrow down the candidates.

• First, we add a log call into the event read loop in “bitbake/lib/bb/ui/toasterui.py”.

This will provide a log of the received events as they go by, and also reveal when

the ESDK file is created.

• I then run a build (in the Toaster context):

logger.info(“FOO:"+str(event)+","+

 str(os.path.isfile('<path_to_esdk_file>')))

163

Using Events for debugging bitbake (2)

• Second, we then run a build (in the Toaster context) and collect the

events:

• Third, we examine the log to find when the file’s state changed.

• We see that the existing ESDK file was removed after

“bb.event.DepTreeGenerated”, and placed after “sstate-build-

populate_sdk_ext”. In other words it was moved out of the main

“populate_sdk_ext” task and into its sstate task. QED.

$ bitbake do_populate_sdk_ext > my_eventlog.txt

...

NOTE: FOO:<bb.event.DepTreeGenerated object at 0x7f94ec829710>,True

NOTE: FOO:<bb.event.MetadataEvent object at 0x7f94ec829358>,False

...

NOTE: FOO:<LogRecord: ... "Executing buildhistory_get_extra_sdkinfo ...">,False

...

NOTE: FOO:<LogRecord: BitBake.Main, ... sstate-build-populate_sdk_ext ...">,False

NOTE: FOO:<bb.build.TaskSucceeded object at 0x7f94e7f5f358>,True

…

164

Analytics and the Event System - Overview

• The Event System

• Example 1: Custom command line analytic tool

• Example 2: Custom Event Interface (knice)

• Example 3: Custom event types

• Example 4: Debugging coincident data in bitbake

• Example 5: Toaster

165

Adding Build Data to the Event Database

• There are many existing analytic views in Toaster

• Start the Toaster GUI in the build directory (with open ports)

• On your host, open your browser to:

devdayXXX.yoctoproject.org:8000

• Click on “All Builds”, and select a build

• Click on “Time”, “CPU Usage”, and “Disk I/O”

• Click on “Tasks”, and see the task order and cache usage

 $ source toaster start webport=0.0.0.0:8000

166

Existing Toaster Analytics

• The Toaster GUI already provides analytical data on builds, for example

on sstate cache success rate, task execution time, CPU usage, and Disk

I/O

Activity Ten

Recipe Specific Sysroots

Joshua Lock

(given by Sean Hudson)

168

Recipe Specific Sysroots - Overview

Topics

• Definitions

• Determinism improvements in YP 2.3 +

• Future reproducibility work

169

Recipe Specific Sysroots

• Reproducible

• Repeatable: rerun a build and have it succeed (or fail) in the

same way

• Deterministic: given the same inputs the build system

should produce equivalent outputs

• Binary reproducible: given the same inputs the system

should produce bit-for-bit identical outputs

170

Recipe Specific Sysroots

Reproducibility and Yocto Project

• Repeatability was a founding goal of the Yocto Project
• Not as common place at the time of the project’s inception

• Determinism of the YP build system has improved over

time
• Vast leap forward with most recent, Pyro, release

• Being able to build binary reproducible artefacts is a

goal for future development
• Some concrete tasks planned for 2.4

171

Recipe Specific Sysroots

Binary Reproducible

• Fully deterministic build system, producing bit-for-bit

identical output given the same inputs

• Build environment is recorded or pre-defined

• Mechanism for users to:
• Recreate the environment

• Repeat the build

• Verify the output matches

https://reproducible-builds.org/

https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/

172

Recipe Specific Sysroots

Yocto Project Reproducibility Features

• DL_DIR – shareable cache of downloads

• Easily replicated build environment - configuration in
known locations, printed build header

• Shared state mechanism – reusable intermediary objects
when inputs haven’t changed

• SSTATE_MIRRORS – remotely addressable cache of

• Uninative – static libc implementation for use with native
tools, improves sstate reuse

• Fixed locale – ensures consistent date/time format, sort
order, etc

173

Recipe Specific Sysroots

Topics

• Definitions

• Determinism improvements in YP 2.3 +

• Future reproducibility work

174

Recipe Specific Sysroots

Shared sysroots – a long-standing source of non-

determinism

• Shared sysroot used by YP build system until 2.3/Pyro

release

• Cause of non-determinism, particularly with long-lived

workspaces
• automatic detection of items in the sysroot which weren't explicitly marked as a

dependency

• items which appear lower in common YP build graphs such as libc, kernel or

common native dependencies such as glib-2.0-native

175

Recipe Specific Sysroots

Recipe specific sysroots improve determinism

• per-recipe sysroot which only includes sysroot components of
explicit dependencies

• sysroot artefacts are installed into a component specific
location

• built by hard-linking dependencies files in from their component
trees

• reinstall sysroot content when the task checksum of the
dependency changes

• resolves the issue of autodetected dependencies and implicit
dependencies through build order

176

Recipe Specific Sysroots

Implementations challenges

• Artefacts in the component sysroots can include hard-

coded paths – we need to be able to fix them for installed

location
• The code knows to look at certain common sites for hard-coded paths and can be

taught to fixup in more locations by appending to the EXTRA_STAGING_FIXMES

variable

• A recipe is composed of several tasks to run in the course

of building its output; fetch, unpack, configure, etc.
• Many of these tasks have task-specific dependencies, we need to re-extend the

sysroot when tasks explicitly require items in the sysroot. i.e.

do_package_write_deb need dpkg-native do_fetch for a git repo requires git-native

177

Recipe Specific Sysroots

Implementations challenges (II)

• post-install scriptlets need to be executed for each recipe-

specific sysroot
• We handle this by installing postinst scriptlets into the recipe-specifc sysroot with a

postinst- prefix and running all of the scriptlets as part of the sysroot setup

• Still need to be able to replicate old shared-sysroot

behaviour in certain scenarios, i.e. eSDK
• bitbake build-sysroot recipe target takes everything in the components

directory which matches the current MACHINE and installs it into a shared

sysroot

178

Recipe Specific Sysroots

Adapting to recipe specific sysroots

Would have liked to be pain-free transition, but there is some
conversion required for recipe-specific sysroots.

• fix missing dependencies – commonly native dependencies, i.e.
glib-2.0-native

• SSTATEPOSTINSTFUNCS → SYSROOT_PREPROCESS_FUNCS
• SSTATEPOSTINSTFUNCS are a hook to call specific functions after a recipe is

populated from shared state, commonly used for fixing up paths.

• As shared state objects will now be installed into the recipe-component location,
then linked into the recipe specific sysroot, we need to be able to perform such fixes
in each constructed sysroot.

• SYSROOT_PREPROCESS_FUNCS: is list of functions to run after sysroot
contents are staged and the right place to perform relocation in RSS world

179

Recipe Specific Sysroots

Adapting to recipe specific sysroots (II)

• Add PACKAGE_WRITE_DEPS for any postinsts requiring native tools at

rootfs construction

• YP build system tries to run preinst and postinsts at rootfs construction time,

deferring any which fail to first boot.

• Any special native tool dependencies of pkg_preinst and pkg_postinst must be

explicitly listed in PACKAGE_WRITE_DEPS to ensure they are available on the

build host at rootfs construction time.

180

Recipe Specific Sysroots

Unexpected consequences

• Recipe specific sysroots aggravated an existing source of

non-determinism

• PATH included locations in the host for boot-strapping

purposes

• Host tools were being used, where available, when native

dependencies were missing

181

Recipe Specific Sysroots

Resolved with PATH filtering

• All required host utilities must be explicitly listed

• These are all symlinked into a directory

• PATH is then cleared and set to this filtered location
• HOSTTOOLS: being unavailable causes an early failure (when they can't be linked

in place)

• HOSTTOOLS_NONFATAL: aren't a build failure when absent, i.e. optional tools like

ccache or proxy helpers

182

Recipe Specific Sysroots - Overview

Topics

• Definitions

• Determinism improvements in YP 2.3 +

• Future reproducibility work

183

Recipe Specific Sysroots

Improved build system determinism

Next set our sights on the next level reproducible

definition: binary reproducible builds.

Common issues that affect binary reproducibility

include:

• Compressing files with different levels of parallelism

• Dates, times, and paths embedded in built artefacts

• Timestamps of outputs changing

184

Recipe Specific Sysroots

Future reproducibility work

• Layer fetcher/Workspace setup tool – to improve ease

of build environment replication

• SOURCE_DATE_EPOCH – open spec to ensure

consistent date/time stamps in generated artefacts

• strip-nondeterminism – post-processing step to

forcibly remove traces of non-determinism

• etc...

185

Example Patches for Recipe Specific Sysroots
Juro Bystricky (34):

 license.bbclass: improve reproducibility

 classutils.py: deterministic sorting

 e2fsprogs-doc: binary reproducible

 python3: improve reproducibility

 busybox.inc: improve reproducibility

 image-prelink.bbclass: support binary reproducibility

 kernel.bbclass: improve reproducibility

 image.bbclass: support binary reproducibility

 gmp: improve reproducibility

 python2.7: improve reproducibility

 attr: improve reproducibility

 acl_2.25: improve reproducibility

 zlib_1.2.11.bb: remove build host references

 flex_2.6.0.bb: remove build host references

 bash.inc: improve reproducibility

 package_manager.py: improve reproducibility …
 …

Questions and Answers

187

Open Topics

• Kernel:

• Is the YP-2.4 kernel already obsolete?

• Kernel fragments for any kernel without explicit inherit?

• Enhanced kernel audit details?

• Distro and kernel feature integration?

• Security

• The Yocto Project has a general policy for sustaining (released)

branches. We tend to fix individual security issues (CVE) instead

of upgrade.

• There is a Yocto Project security mailing list: yocto-

security@yoctoproject.org

• Low volume. We are working on automatically mailing patches

that include the CVE tag to the mailing list so it is searchable, but

we have not yet done so.

188

Open Topics
• This is tracked by including the relevant CVE tag, pointing to the CVE

information in the patches themselves, such as:

• The above version includes a fix, documents it (CVE: CVE-2016-6321),

and then also documents where the fix came from (upstream commit

7340f67 of that project).

+From 7340f67b9860ea0531c1450e5aa261c50f67165d Mon Sep 17 00:00:00 2001

+From: Paul Eggert <eggert@Penguin.CS.UCLA.EDU>

+Date: Sat, 29 Oct 2016 21:04:40 -0700

+Subject: [PATCH] When extracting, skip ".." members

+

+* NEWS: Document this.

+* src/extract.c (extract_archive): Skip members whose names contain

+"..".

+

+CVE: CVE-2016-6321

+Upstream-Status: Backport

+

+Cherry picked from commit: 7340f67 When extracting, skip ".." members

+

+Signed-off-by: Sona Sarmadi <sona.sarmadi@enea.com>

Thank you for your

participation!

Appendix: Board Bring-up

191

MinnowBoard Max Turbot SD Card Prep

• Here is how to flash the microSD card for the MBM

• Insert the microSD card into your reader, and attach

that to your host

1. Find the device number for the card (e.g. “/dev/sdc”). For

example run “dmesg | tail” to find the last attached device

2. Unmount any existing partitions from the SD card (for

example “umount /media/<user>/boot”)

3. Flash the image

$ sudo dd if=tmp/deploy/images/intel-corei7-64/core-

image-base-intel-corei7-64.hddimg of=<device_id> bs=1M

4. On the host, right-click and eject the microSD card’s

filesystem so that the image is clean

192

MinnowBoard Max Turbot SD Card Prep

• Note: you can instead use the automatically generated

WIC image

1. Flash the image

$ sudo dd if=scratch/working/build-

mbm/tmp/deploy/images/intel-corei7-64/core-image-base-

intel-corei7-64.wic of=<device_id> bs=1M

2. Note that when the target boots, the WIC version of the

image the kernel boot output does not appear on the serial

console. This means that after 14 seconds of a blank

screen you will then see the login prompt

193

MinnowBoard Max Turbot Board Bring-up
• Setting up the board connections

1. Unpack the target

2. Insert the provided micro-SD card (pin side up)

3. Attach the ethernet cable from the target to the hub

4. Attach the FTDI 6-pin connector. The BLACK wire is on pin 1, which

has an arrow on the silk-mask and is on the center-side of the 6-pin inline

connector near the microSD connector

5. Connect the FTDI USB connector to your host
(Note: the USB serial connection will appear on your host as soon as the FTDI

cable is connected, regardless if the target is powered)

• Start your host’s console for the USB serial console connection

• On Linux, you can use the screen command, using your host’s added

serial device (for example “/dev/ttyUSB0):

• $ screen /dev/ttyUSB0 115200,cs8 (FYI: “CTRL-A k” to kill/quit)

• On Windows, you can use an application like “Teraterm”, set the serial

connection to the latest port (e.g. “COM23”), and set the baud rate to

115200 (“Setup > Serial Port… > Baud Rate…”)

194

MinnowBoard Max Turbot Board Bring-up (2)
• Start the board

1. Connect the +5 Volt power supply to the target

2. You should see the board’s EFI boot information appear in your host’s

serial console

• Run these commands to boot the kernel

Shell> connect -r

Shell> map -r

Shell> fs0:

Shell> bootx64

• You should now see the kernel boot

• At the login prompt, enter “root”

• Note: see the appendix on instructions on how we create the microSD card images

195

Beaglebone Black - Setup

• Create project directory, update local.conf and

bblayers.conf

• Nothing to change in bblayers.conf , beaglebone is

supported in meta-yocto-bsp

195

$ export INSTALL_DIR=`pwd`

$ git clone -b rocko git://git.yoctoproject.org/poky

$ source poky/oe-init-build-env `pwd`/build_beagle

$ echo 'MACHINE = "beaglebone"' >> conf/local.conf

$ echo 'IMAGE_INSTALL_append = " gdbserver openssh"' \

 >> conf/local.conf

$ echo 'EXTRA_IMAGEDEPENDS_append = " gdb-cross-arm"' \

 >> conf/local.conf

$ bitbake core-image-base

196

BeagleBone Black - MicroSD

196

Format blank SD Card for Beaglebone Black

$ export DISK=/dev/sd[c] <<<Use dmesg to find the actual device name

$ sudo umount ${DISK}1 <<<Note the addition of the '1'

$ sudo dd if=/dev/zero of=${DISK} bs=512 count=20

$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-__EOF__

1,12,0xE,*

,,,-

__EOF__

$ sudo mkfs.vfat -F 16 ${DISK}1 -n boot

$ sudo mkfs.ext4 ${DISK}2 -L rootfs

Now unplug and replug your SD Card for automount

$ cd tmp/deploy/images/beaglebone

$ sudo cp -v MLO-beaglebone /media/guest-mXlApE/BOOT/MLO

$ sudo cp -v u-boot.img /media/guest-mXlApE/BOOT/

$ sudo tar xf core-image-base-beaglebone.tar.bz2 \

 -C /media/guest-mXlApE/rootfs

$ sync (flush to device, not neccesary, but illustrative)

$ umount /media/guest-mXlApE/rootfs /media/guest-mXlApE/boot

197

Dragonboard 410c - Setup

• See this URL to see instructions on how to install Yocto
Project:

https://github.com/Linaro/documentation/blob/master/Refe
rence-Platform/CECommon/OE.md

• To get a serial boot console, you will need to get a
specialized FTDI cable. Here are some sources:

https://www.96boards.org/products/accessories/debug/

• For the slow GPIO bus (at 1.8V), it is recommended to use a
protected and/or voltage shifting shield, for example the new Grove
baseboard for the Dragonboard

197

Bonus Activity

Node.js

Henry Bruce

199

Introduction

• Credits: Brendan Le Foll and Paul Eggleton

200

What we’ll be doing

• Understanding Node.js support in Open Embedded

• Using devtool to auto-generate Node.js recipes

• Building and deploying a package

• On-target Node.js application development

• Using devtool to package the application

• Discuss known issues and plans for future work

201

Node.js and Open Embedded

• Layer index recipe search returns ~10 hits
• We’ll be working with the meta-oe recipe

• (4.x, oldest LTS version)

• More versions are available in meta-nodejs

• Devtool support was introduced in krogoth
• Use pyro

• There’s still work to do. See bug #10653.

https://github.com/imyller/meta-nodejs
https://github.com/imyller/meta-nodejs
https://github.com/imyller/meta-nodejs
https://bugzilla.yoctoproject.org/showdependencytree.cgi?id=10653&hide_resolved=1

202

Using devtool to generate recipe

• Go to the build directory (with a clean shell)
 $ cd /scratch

 $. poky/oe-init-build-env

• Create recipe from module in registry

a) $ devtool add "npm://registry.npmjs.org;name=mraa;version=1.5.1“

-- or --

b) $ devtool add /scratch/src/nodejs/mraa-1.5.1.tgz

• Parses package.json for basis of recipe
• Package name and version

• Description, homepage

• Location of source

• Licenses

• Recursively goes through dependencies
• Creates shrinkwrap and lockdown files
$ devtool edit-recipe mraa

203

Under the hood

• NPM makes it hard to limit network access to fetch

task

• Fetch task walks dependency tree fetching tarballs

from NPM registry

• Build task uses ‘npm install’ with registry disabled

(OE specific patch) to create node_modules

• Install tasks puts node_modules in correct place

204

Building and deploying

• Build is really a pre-package task (apart from native

gyp builds)
$ devtool build mraa

• Deploy as normal
$ devtool deploy-target -s mraa

root@target_addr

• Is module installed on the target?
npm -g ls mraa

205

Running on target

export NODE_PATH=/usr/lib/node_modules

node

> var mraa = require(‘mraa’)

> console.log(‘mraa board: ‘ + mraa.getPlatformName())

> var gpio = new mraa.Gpio(360, true, true)

> gpio.dir(mraa.DIR_OUT)

> gpio.write(1)

206

Developing on target

• Many ways of doing this. Let’s keep it simple

• On your target

mkdir mmax-blinker

cd mmax-blinker

• Write some code and test it
cp $NODE_PATH/mraa/examples/javascript/Blink-IO.js .

vi Blink-IO.js

change GPIO to “raw” id 360

add #!/usr/bin/node

node Blink-IO.js

207

Create NPM module on target

• Create package.json
cp $NODE_PATH/mraa/COPYING .

npm init

vi package.json

Add “bin” entry. Local dependency for mraa (or skip)

• Install
npm -g install

• Test
mmax-blinker

208

Create package for your application

• Copy files to build host
scp –r root@x.x.x.x:mmax-blinker mmax-blinker

• Check dependencies

• Local dependencies are for development only

• Now create package
$ devtool add /path/to/mmax-blinker

$ devtool edit-recipe mmax-blinker

mailto:root@x.x.x.x:mmax-blinker
mailto:root@x.x.x.x:mmax-blinker
mailto:root@x.x.x.x:mmax-blinker

209

Build, deploy and run application

• Build
$ devtool build mmax-blinker

• Deploy
$ devtool deploy-target mmax-blinker root@x.x.x.x

ln -s /usr/lib/node_modules/mmax-blinker/Blink-IO.js

/usr/bin/mmax-blinker

chmod +x /usr/bin/mmax-blinker

• Run
mmax-blinker

mailto:root@x.x.x.x

210

Keep in Touch

• https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_I

mprovements

https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_Improvements
https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_Improvements
https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_Improvements

211

FYI: How to add Nodejs to your project

$

$ cd /scratch/poky

$ git clone -b morty git://git.openembedded.org/meta-openembedded

$ git clone -b morty git://git.yoctoproject.org/meta-intel

$ source /scratch/poky/oe-init-build-env

$ echo "MACHINE = \"intel-corei7-64\"" >> conf/local.conf

$ echo "IMAGE_INSTALL_append = \" nodejs nodejs-npm curl \"" \

 >> conf/local.conf

$ echo "BBLAYERS += \"/scratch/poky/meta-intel \"" \

 >> conf/bblayers.conf

$ echo "BBLAYERS += \"/scratch/poky/meta-openembedded/meta-oe \"" \

 >> conf/bblayers.conf

$ bitbake core-image-base

$ bitbake nodejs-native

$ bitbake cmake-native

$ bitbake parted-native dosfstools-native mtools-native

$

