
Test reporting tool (TRT)
Motivations, goals and requirements

26 Aug 2016 1 of 7

What I did

4 semi-structured interviews in early August
2016:

▪ 2 with the Intel QA team

▪ 2 with the Intel development team

What I found

Although there are many commonalities between
the motivations, goals and information
requirements of the QA and development teams,
there is a fundamental difference in scope.

While QA is primarily concerned with the
presentation and manipulation of data from
release candidate builds, development is primarily
concerned with the presentation and
manipulation of data from any build run by the
Autobuilder (not just release candidate builds). It
is continuous integration data they are after.

In addition to test results and performance
metrics, developers are also interested in build
output data currently collected by build history
(images, their size, file and package content).

26 Aug 2016 2 of 7

What does this mean?

Satisfying the requirements of the development
team adds significant complexity:

1. It means storing and manipulating much more
data, which is likely to bring up performance
problems.

2. It requires integrating pretty much all our data
presentation tools, including buildhistory-web, the
error reporting tool and Toaster.

From a design perspective at least, this is a much
bigger problem to tackle.

What do we do?

Focus on the goals and requirements of the QA
team first, which are better defined and more
limited in scope.

Since they are a subset of the developers’ goals
and requirements, everybody wins.

Test reporting tool - Motivations, goals and requirements
What I did and what I found

26 Aug 2016 3 of 7

Motivations and goals

▪ Improve planning and resource allocation.

▪ Increase focus on the most problematic
project components and test cases.

▪ Reduce the amount of manual work.

▪ Faster delivery of reports and QA
information to the project maintainers.

▪ Improve the quality of the information
delivered to the project maintainers,
pointing to problematic areas and including
quantitative data.

▪ Standardise output and presentation of
results for all test runners.

▪ Keep a historical record of QA data (store
all test results for all release candidates).

▪ Overcome the presentation constraints and
data analysis limitations imposed by the
existing tooling (Bugzilla, Testopia and
MediaWiki).

Information requirements

▪ See test results for a single release
candidate.

▪ See test results for several release
candidates.

▪ See the overall status of one or more
releases candidates at a glance.

▪ For each test result, see associated test
cases, test runs, Bugzilla issues and
component information.

▪ Search test results and its associated
information using free text queries.

For one or more release candidates:

▪ See test results for a subset of test
outcomes (passed, failed, blocked, skipped).

▪ See test results for a subset of components.

▪ See test results for a component’s subset of
environments.

▪ See a subset of test results for any
combination of the above 3 criteria
(outcome + component + environment).

Data sources and tools

▪ Testopia (test runs, test cases and
associated Bugzilla issues).

▪ Bugzilla (issue descriptions and
importance).

▪ Build performance data.

▪ Test runners (xml output).

▪ Autobuilder (build logs, release candidate
images).

▪ Error reporting tool (error reports logged
for a release candidate).

Test reporting tool - Motivations, goals and requirements
QA team

26 Aug 2016 4 of 7

Motivations and goals

▪ Enable analysis of data we already collect
but is currently scattered around different
tools and Git repositories.

▪ Visualise evolution of project quality over
time.

▪ Better problem detection. The goal is to
proactively identify issues, instead of relying
on community reports.

▪ Aid release decision making, by helping
answer the question: is this candidate fit for
release?

▪ Better planning and more effective
distribution of QA effort.

▪ Reduce manual work in the QA workflow.

▪ Improve the information QA feeds to the
project maintainers.

▪ Increase visibility of project status within
the community.

▪ Increase visibility and appreciation of
existing QA effort within by the community.

Information requirements

All the ones listed for the QA team, plus the
following additional requirements:

▪ See build output data provided by build
history, not just tests results (e.g. image size,
number of files in rootfs, file list and
location, package dependencies, etc).

▪ See build output data, performance data
and test results for all builds executed in the
Autobuilder, not just for release candidates.

▪ See the above information not just for one
build, but for several builds, for comparison
purposes.

▪ For any build executed in the Autobuilder,
see all the error reports generated.

Data sources and tools

All the ones listed for the QA team, plus:

▪ Build history for image size, rootfs content
and package dependencies.

▪ buildhistory-web, for visualising differences
between builds.

▪ Toaster, which already displays image size,
rootfs content and package dependencies.

Test reporting tool - Motivations, goals and requirements
Development team

26 Aug 2016 5 of 7

Dashboard design proposal

The Test reporting tool UI will likely have the
following main features:

▪ A way to select a specific release candidate

For each release candidate:

▪ A dashboard to provide an overview of the
test results

▪ A table of test cases with good filtering
capabilities, so that you can, for example,
see all test cases for meta-yocto with
medium+ or high bugs associated to them

▪ A separate table to show ptest results

▪ An additional page to display build
performance information

▪ A comparison function that will allow you to
see data for several release candidates

The image on the left shows a first design proposal
for the release candidate dashboard. A higher
resolution image is available at

https://wiki.yoctoproject.org/wiki/
File:Dashboard.png

Test reporting tool - Motivations, goals and requirements
Dashboard design proposal

26 Aug 2016 6 of 7

Keep in mind this is only a first version, just a way
to get us started. It is a static mock up, and does
not include any navigation design.

The data shown in the image comes from the QA
report for 2.2 M2.rc1. I hope using real data will
help us make decisions about which content to
include.

The dashboard shows:

1. Selected release candidate

2. Branch and commit

3. Date

4. Overall test results

5. Number of error reports in the error
reporting tool for the tested commit SHA

6. Break down of tests results into automated,
manual and ptests.

7. Performance data, including the difference over
the previous release candidate

1
2

3

4

5

6 7

Test reporting tool - Motivations, goals and requirements
Dashboard content (I)

26 Aug 2016 7 of 7

8. Test results broken down per component

9. BSP test results broken down by BSP

8

9

Test reporting tool - Motivations, goals and requirements
Dashboard content (II)

