ﬂ
O

PROJECT

yocto \ DL

Advanced Class

Yocto Project Developer Day e
Praguee 26 October 2017

Advanced Class

 Class Content:
o https://wiki.yoctoproject.org/wiki/DevDay Praque 2017

* Requirements:
* Wireless
- SSH (Windows: e.g. “putty”)

* Wireless Registration:
« TBD

Agenda - The Advanced Class

9:00- 9:15 Opening session, What's New

9:15- 9:30 Account setup

9:30-10:15 Devtool: creating new content

10:15-10:30 Morning Break

10:30-11:15 DT overlays

11:15-12:00 Userspace: packaging, installation, system services
12:00- 1:00 Lunch

1:00- 1:45 License Compliance and Auditing

1:45- 2:15 CROPS

2:30- 2:45 Afternoon Break

2:45- 3:15 Maintaining your Yocto Project Distribution
3:15- 3:50 Kernel Modules with eSDKs

3:50- 4:30 Analytics and the Event System

4:30- 5:00 Recipe specific sysroots

5:00- 5:30 Forum, Q and A

Yocto Project | The Linux Foundation

Notes for the Advanced Class:
 The class will be given with YP-2.4 (Rocko)

 Wifi Access:
« SSID: <TBD>
« Password: <TBD>

* Your account’s IP access addresses

« SSH (password “devday”):
ssh ilab0l@devdayXXX.yoctoproject.org

e HITTP:
devdayXXX.yoctoproject.org:8000

Yocto Project Dev Day Lab Setup

 The virtual host’s resources can be found here:
* Your Project: "/scratch/working/build “
« Extensible-SDK Install: "/scratch/sdk/gemuarm®
« Sources: "/scratch/src”
« Poky: "/scratch/poky"
 Downloads: "/scratch/downloads”
e Sstate-cache: "/scratch/sstate-cache”

* You will be using SSH to communicate with your virtual server.

FYI. How class project was prepared

cd /scratch

git clone -b rocko git://git.yoctoproject.org/poky.git

cd poky

bash

./scratch/poky/oe-init-build-env build

echo "MACHINE = \“gemuarm\"" >> conf/local.conf

echo "SSTATE DIR = \“/scratch/sstate-cache\"" >> conf/local.conf

echo "DL DIR = \“/scratch/downloads\"" >> conf/local.conf

echo "IMAGE INSTALL append = \" gdbserver openssh libstdc++ \
curl \"" >> conf/local.conf

Capture the build into a Bitbake/Toaster database
toaster start webport=0.0.0.0:8000

Build the project

bitbake core-image-base

S V) 30 () B 0» BE 7)) BV 3K) BB) 30 () 4

v v »n

When you are done
toaster stop
exit

7 Yocto Project | The Linux Foundation

v U n

NOTE: Clean Shells!

 We are going to do a lot of different exercises In
different build projects, each with their own
environments.

* To keep things sane, you should have a new clean
shell for each exercise.

 There are two simple ways to do it:

1. Close your existing SSH connection and open a new one
- Or‘ —_

2. Do a “bash” before each exercise to get a new sub-shell,
and “exit” at the end to remove it, in order to return to a
pristine state.

Yocto Project 2.4 (Rocko)

Yocto Project | The Linux Foundation

Yocto Project — What is new in 2.4 Rocko

* Yocto Project 2.4 Themes

* Process/Tooling/Workflow Improvements - Patchwork,
Patchtest, SWAT, Error reporting, Reproducability, Memory
Resident Bitbake now default

* Improving Testing/QA Automation/Coverage Efficiency -
oeselftest, Test automation, CI/AB - modernization and
moving more into YP

« Creating Leading edge Build Technology - Delivering prebuilt
binaries to customers, Improve Binary/Build Reproducibility

« Enhancing IoT Application Development - CROPS (eclipse
support, dev containers), eSDK (team workflow), devtool
(team workflow, extend heuristics), juci from openWRT
support

Yocto Project — Release Notes

*Linux kernel 4.12, 4.10, 4.9 (LTS/LTSI), 4.4 (LTS)

*gcc 7.2

*glibc 2.26

* Significant work on binary reproducibility - >98% of packages used to build core-
image-sato are now reproducible.

* Support for Vulkan 3D graphics/compute API, enabled by default in poky distro
configuration

* New "distrooverrides" class to selectively turn DISTRO_FEATURES into overrides
(enabling bbappends with functionality conditional upon DISTRO_FEATURES)

* New VOLATILE _LOG_DIR variable to allow making /var/log persistent

* Support for merged / and /usr with "usrmerge" DISTRO_FEATURES item

* Parallelised ipk and deb package creation for improved performance

* Go improvements:

* Python improvements:

* wic image creator enhancements:

* devtool/recipetool enhancements:

* BitBake improvements:

* Package QA improvements:

* RPM improvements

And so much more, including Known Issues, Security Fixes and Recipe Updates!

Devtool

Tim Orling, Sean Hudson, David Reyna

Yocto Project | The Linux Foundation

devtool — Qverview

 devtool IS acollection of tools to aid developer workflow:
« Create, update, modify recipes in the build environment

« Streamlines development by performing repetitive tasks via tinfoll
(wrapper around bitbake) and recipetool.

« Application development in user space (with eSDK)

 The extensible SDK (eSDK) is a portable and standalone
development environment , basically an SDK with an
added bitbake executive via devtool.

« The eSDK runs in a Linux environment, but we will cover
running it in a Mac OS X (or Windows) environment in the
CROPS session (using Docker containers).

« NOTE: this session will focus on the layer maintainer/system
integrator’s workflow (build environment)

devtool — Types of projects currently supported

e Autotools (autoconf and automake)

 Cmake

* gmake

 Plain Makefile

« Qut-of-tree kernel module

« Binary package (i.e. “-b” option)

* Node.js module

* Python modules that use setuptools Ordistutils

devtool — Qverview
Example Workflow

Development phase

I e e

. Create a new recipe \ Host
Ill devtool add k fm————————— N '
« Create workspace e I | S | o | i
layer | B i
* Build it e |
. Deploy to target L i
« Testing testing testing \ |_ aeptoy-sarget -
« Correctany findingsin T8 #q \ N
- { collect issues \Il P finish :
the reCIpe Testi : test binary ::‘ :
- : esting | I >
 Merge new recipe into phasegi ii ;
layer | Ontargetboard or | __ /
_in emulator shell / Release
————————————————— phase

devtool — Qverview

u‘- ! parsed cached built package
r 'Q_B' metadata data
g . DEPENDS
o — devtool add http:// <site>/hello-2.10.tar.gz S]’"\R?EEEEES,’_{ 3

! L ¥
devtool create-workspace workspace - \r EQUIFEJ;
tj workspace 1:1[L#;

t:j workspace C]appends [)

Iy i reci DEtDDl Create |
README m recipes L e 4

t:j conf hello i
layer.conf hello_2.10.bb <t -

sources

‘tj hello inherit

git autotools
— Makefile.am

Cj src

devtool - Baking in a sandbox

Class will cover these use cases for devtool

* Development cycle with a new recipe

« Create arecipe from a source tree, then we will build,
deploy, edit, build, and deploy

* Development cycle to modify the source of existing
recipe
« Extract recipe and source, then edit, build, and deploy

* Development cycle to upgrade an existing recipe
« Extract recipe and source, then edit, build, and deploy

devtool - SUbCcOMMands

Beginning work on arecipe:
add
modify
upgrade

Getting information:
status
search

Add a new recipe
Modify the source for an existing recipe
Upgrade an existing recipe

Show workspace status
Search available recipes

Working on arecipe in the workspace:

build
edit-recipe
configure-help
update-recipe
reset

Testing changes on target:
deploy-target
undeploy-target
build-image

Advanced:
create-workspace
extract
sync

Build a recipe

Edit a recipe file in your workspace

Get help on configure script options

Apply changes from external source tree to recipe
Remove a recipe from your workspace

Deploy recipe output files to live target machine
Undeploy recipe output files in live target
Build image including workspace recipe packages

Set up workspace in an alternative location
Extract the source for an existing recipe
Synchronize the source tree for an existing recipe

Activity O — Setup our build enviroment

- Start a new Shell! Otherwise, the existing bitbake
environment can cause unexpected results

<open new clean shell>
$ cd /scratch

 Source the build environment

S . ./poky/oe-init-build-env build-devday

« Use the pre-populated downloads and sstate-cache

$ sed -1 -e 's:#DL DIR ?= "${TOPDIR}/downloads":DL DIR ?=
"/scratch/downloads":g' conf/local.conf

$ sed -1 -e 's:#SSTATE DIR ?= "${TOPDIR}/sstate-
cache":SSTATE DIR ?= "/scratch/sstate-cache":g'
conf/local.conf

- Set machine to gemuarm

S sed -1 -e 's:#MACHINE ?= "gemuarm":MACHINE ?=
"gemuarm":g' conf/local.conf

Activity 0 — Setup a new layer to receive our work

Best practice is to use a function/application
layer, so let’s create one

S pushd ..
$ yocto-layer create foo

S popd

Add our new layer to our configuration

S bitbake-layers add-layer ../meta-foo

« Setup complete! Time to create a new recipe...

Activity 1: Add a new recipe

* Optional: build core-image-minimal first

$ pwd
(should be in /scratch/build-devday)

$ devtool build-image core-image-minimal

« Add our new recipe

$ devtool add nano \
https://www.nano-editor.org/dist/v2.7/nano-2.7.4.tar.xz

e Examine what devtool created:

S 1s workspace
S§ find workspace/recipes
S pushd workspace/sources/nano/

S git log
S popd
Now we are ready to build it:

S devtool build nano
S devtool build-image core-image-minimal

Activity 1. Add a new recipe (continued)
Run our image in QEMU

$ rungemu slirp nographic gemuarm
(login as root, no password)

Run our application

S nano
(Ctrl-x to exit nano)

Examine where it was installed

S 1s /usr/bin/nano
S exit
(Ctrl-a x to exit gemu)

Activity 1. Add a new recipe (continued)
* “Publish” our recipe

S devtool finish nano ../meta-foo

* Clean up

S rm -rf workspace/sources/nano

 Profit!

Activity 2. Modify arecipe

« Sanity check

$ pwd
(should be in /scratch/build-devday)

* Re-inforce what we just learned
S devtool add hello \
https://ftp.gnu.org/gnu/hello/hello-
2.10.tar.qgz
S devtool build hello
S devtool build-image core-image-minimal
S rungemu slirp nographic gemuarm
(login as root, no password)

* Run our new application
S hello

Hello, world!

Activity 2. Modify arecipe (continued)

e Sanity check

$ pwd
(should be in /scratch/build-devday)

* Re-inforce what we just learned
S devtool add hello \
https://ftp.gnu.org/gnu/hello/hello- 2.10.tar.gz
S devtool build hello
S devtool build-image core-image-minimal
S rungemu slirp nographic gemuarm
(login as root, no password)

* Run our new application
S hello
Hello, world!
S exit
(Ctrl-a x to exit gemu)

* Publish our new recipe and cleanup
S devtool finish hello ../meta-foo
S rm —-rf workspace/sources/hello

Activity 2. Modify arecipe (continued)
- Might need to let git know who you are

S git config --global user.email
voudexample.com
S git config --global user.name "Your Name”

* Modify our application’s source code
$ devtool modify hello
$ pushd workspace/sources/hello
$ sed -1 -e 's:"Hello, world!":"Hello, Prague!":g'
src/hello.c
S git log
$ git commit -m "Change world to Prague"

« Build and run our modified application
S devtool build-image core-image-minimal
S rungemu slirp nographic gemuarm
(login as root, no password)
S hello
Hello, Prague!
S exit
(Ctrl-a x to exit gemu)

mailto:you@example.com

Activity 2. Modify arecipe (continued)

* Publish our modifed source and recipe and cleanup

S popd
S devtool finish hello ../meta-foo
S rm —-rf workspace/sources/hello

 Review what changed
$ pushd ../meta-foo/recipes-hello/hello
S 1s
$ cat hello 2.10.bb
$ cat hello %.bbappend
S cat hello/0001-Change-world-to—-Prague.patch

S popd

 Cleanup
$ rm —-rf workspace/sources/hello

 Profit!

Activity 3. Upgrade arecipe
« Upgrade our nano recipe to the latest version

S devtool upgrade nano —--version 2.8.7

* (Hack) Fix fetch URL to allow upgrade to v2.8.x
S sed -1 -e 's:v2.7:v2.8:g" \
. ./meta-foo/recipes—nano/nano/nano 2.7.4.bb

« NOTE: there iIs a bugzilla open to add the ability to
change the fetch URL
[https://bugzilla.yoctoproject.org/show bug.cgi?id=10722]

« Cleanup our failed upgrade attempt
S rm -rf workspace/sources/nano

« Actually upgrade

S devtool upgrade nano --version 2.8.7

Activity 3: Upgrade arecipe (continued)
- Review what changed

S 1s workspace/recipes/nano
$ cat workspace/recipes/nano/nano 2.8.7.bb

* Test our upgraded application
S devtool build-image core-image-minimal
S rungemu slirp nographic gemuarm
(login as root, no password)
S nano
(Ctrl-x to exit nano)
S exit
(Ctrl-a x to exit gemu)

« Publish our work and cleanup

S devtool finish nano ../meta-foo
$ rm -rf workspace/sources/nano
* Profit!

devtool - References

1. Yocto devtool documentation

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual. html#using-devtool-in-
your-workflow

2. Tool Author Paul Eggleton’s ELC Presentation:

http://events.linuxfoundation.orqg/sites/events/files/slides/yocto project dev workflow elc 20
15_0.pdf

3. Trevor Woerner’s Tutorial
https://drive.google.com/file/d/OB3KGzY5fW7la0OmagxVXVTSDJHeFU/view?usp=sharing

4, Sean Hudson’s YP Dev Day Presentation (more focused on eSDK workflow):
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay Advanced_Class_Portland.pdf

5. Instructor’s ELC Presentation:
https://elinux.org/images/e/e2/2017 ELC --
Using devtool to Streamline your Yocto Project Workflow.pdf

https://www.youtube.com/watch?v=CiD7rB35CRE

http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://www.yoctoproject.org/docs/current/dev-manual/dev-manual.html#using-devtool-in-your-workflow
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
http://events.linuxfoundation.org/sites/events/files/slides/yocto_project_dev_workflow_elc_2015_0.pdf
https://drive.google.com/file/d/0B3KGzY5fW7laQmgxVXVTSDJHeFU/view?usp=sharing
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://elinux.org/images/e/e2/2017_ELC_--_Using_devtool_to_Streamline_your_Yocto_Project_Workflow.pdf
https://www.youtube.com/watch?v=CiD7rB35CRE
https://www.youtube.com/watch?v=CiD7rB35CRE
https://www.youtube.com/watch?v=CiD7rB35CRE

DT overlays

Marek Vasut

Yocto Project | The Linux Foundation

Device Tree

- Data structure describing hardware

« Usually passed to OS to provide information about
HW topology where it cannot be detected/probed

* Tree, made of named nodes and properties

« Nodes can contain other nodes and properties

« Properties are a name-value pair

. See https://len.wikipedia.org/wiki/Device_tree
DT can contain cycles by means of phandles
 ePAPR specification of DT:

. https://elinux.org/images/c/cf/Power _ePAPR_APPR
OVED _v1.1.pdf

Device Tree Example

« arch/arm/boot/dts/arm-realview-eb-a9mp.dts

/dts-v1l/;
#include "arm-realview-eb-mp.dtsi"
/A
model = "ARM RealView EB Cortex A9 MPCore";
[-co]
cpus {
#faddress-cells = <1>;
fsize-cells = <0>;
enable-method = "arm,realview-smp";
A9 0: cpulO {
device type = "cpu";
compatible = "arm,cortex-ad";
reg = <0>;
next-level-cache = <&L2>;
} i
[...]
&pmu |
interrupt-affinity = <&A9 0>, <&A9 1>, <&A9 2>, <&A9 3>;
}:

Yocto Project | The Linux Foundation

Problem — Variable hardware

DT started on machines the size of a little fridge

« HW was mostly static

« DT was baked into ROM, optionally modified by bootloader
- DT was good, so it spread

« First PPC, embedded PPC, then ARM ...
 There always was slightly variable hardware

« Solved by patching DT in bootloader

« Solved by carrying multiple DTs

« Solved by co-operation of board files and DT

« N all that does not scale

Problem — Variable hardware — 201x edition

« Come 201x, variable HW became easy to make:

« Cheap devkits with hats, lures, capes, ...

« FPGAs and SoC+FPGAs became commonplace ...

« => Combinatorial explosion of possible HW configurations
« Solution retaining developers’ sanity

« Describe only the piece of HW that is being added

« Combine these descriptions to create a DT for the system

« Enter DT overlays

Device Tree Overlays

- DT: Data structure describing hardware
« DTO: necessary change(s) to the DT to support particular feature
« Example: an expansion board, a hardware quirk,...

« Example DTO:

/dts-v1/;
/plugin/;
/A

#address-cells = <1>;
#size-cells = <0>;
fragment@0O {
reg = <0>;
target-path = "/";
___overlay {
#address-cells = <1>;
#size-cells = <0>;
hello@0 {
compatible = "hello,dto";
reg = <0>;

¥ ¥ & ¥

Yocto Project | The Linux Foundation

Advanced DTO example

/dts-v1/;
/plugin/;
[...]
fragment@2 ({
reg = <2>;

target-path = "/soc/usb@ffb40000";
__overlay {
[...]
status = "okay";

b
b g

fragment@3 {
reg = <3>;

target-path = "/soc/ethernet@f£700000";
___overlay {
[...]
status = "okay";

phy-mode = "gmii";

Yocto Project | The Linux Foundation

DTO Hands-on

* Use pre-prepared meta-dto-microdemo layer

* meta-dto-demo contains:
« Kernel patch with DTO loader with ConfigFS interface
. Kernel config fragment to enable the DTO and loader
« Demo module
« Demo DTO source (hello-dto.dts)

« Core-image-dto-microdemo derivative from
core-image-minimal with added DTO examples and DTC

DTO Hands-on 1/2

 Add meta-dto-demo to bblayers.conf BBLAYERS:

$ $S{EDITOR} conf/bblayers.conf

« Rebuild virtual/kernel and core-image-dto-microdemo

S bitbake -c cleansstate virtual/kernel
S bitbake core-image-dto-microdemo

- Start the new image in QEMU

$ rungemu gemuarm

Yocto Project | The Linux Foundation

DTO Hands-on 2/2

« Compile DTO

$ dtc -I dts -0 dtb /lib/firmware/dto/hello-dto.dts \
/tmp/hello-dto.dtb

e Load DTO

$ mkdir /sys/kernel/config/device-tree/overlays/mydto
$ cat /tmp/hello-dto.dtb > \
/sys/kernel/config/device-tree/overlays/mydto/dtbo

e Unload DTO

$ rmdir /sys/kernel/config/device-tree/overlays/mydto

Yocto Project | The Linux Foundation

DTO encore

« DTOs can be used to operate SOC+FPGA hardware
* Done using FPGA manager in Linux

fragment@O {
reg = <0>;
/* controlling bridge */
target-path = "/soc/fpgamgr@Rff706000/bridgeR0";
___overlay {
faddress-cells = <1>;
#size-cells = <1>;
area@0 {
compatible = "fpga-area";
#address-cells = <2>;
fsize-cells = <1>;
ranges = <0 0x00000000 0xff200000 0x00080000>;

firmware-name = "fpga/bitstream.rbf";
fpga version@O0 ({
compatible = "vendor, fpgablock-1.0";

reg = <0 0x0 0x04>;
I

Yocto Project | The Linux Foundation

Userspace: Advanced Topics
Rudi Streif
(given by David Reyna)

Yocto Project | The Linux Foundation

See Rudi Streif’s Book on Yocto Project!

+ “Embedded Linux Systems with the Yocto Project”,
Hardcover — May 2 2016, Prentice Hall

Comnagemd Mator i

 Hortoding

BEINTCE WAL OFIN SOURCT SONTWARTE DIVILOPVINT M1 8

Embedded
Linux Systems with

Rudolf J. Streif

Amazon: #10 in Books > Computers & Technology > Hardware > Microprocessors & System
Design > Embedded Systems

https://www.amazon.ca/gp/bestsellers/books/ref=pd_zg_hrsr_b_1_1/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/939082/ref=pd_zg_hrsr_b_1_2/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940426/ref=pd_zg_hrsr_b_1_3/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940478/ref=pd_zg_hrsr_b_1_4/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940478/ref=pd_zg_hrsr_b_1_4/143-5315836-9217713
https://www.amazon.ca/gp/bestsellers/books/940482/ref=pd_zg_hrsr_b_1_5_last/143-5315836-9217713

What We Are Going To Do

« Most of your development work will likely be developing your own
software packages, building them with the Yocto Project and installing
them into a root file system built with the Yocto Project.

« Let's look at some typical tasks beyond creating the base recipe:
Customizing Packaging
« Package Installation Scripts
« System Services

Activity Setup
Initialize the Build Environment (IN A CLEAN SHELL)

* cd /scratch/poky

o source oe-init-build-env build

Adjust Configuration (DONE FOR YOU)

e vi conf/local.conf

MACHINE = "gemuarm"
DL DIR ?= "/scratch/downloads"
SSTATE DIR ?= "/scratch/sstate-cache"

management"

EXTRA IMAGE FEATURES ?= "debug-tweaks dbg-pkgs dev-pkgs package-

Build (DONE FOR YOU)

* Dbitbake -k core-image-base

Test (login as ‘root’, no password needed)

* rungemu gemuarm nographic

Exit QEMU with cTrL-2, x

Yocto Project | The Linux Foundation

Activity Setup - Continued

« Create Local Devtool Layer “meta-uspapps”

* devtool create-workspace meta-uspapps

« Observe your source file directory

° tree /scratch/src/userspace
/scratch/src/userspace
\-- fibonacci
| -—— fibonacci-app
| | -—— fibonacci-app.c
| \-- Makefile
| -—— fibonacci-1lib
| | -——— fibonacci-app.c
| | -—— fibonacci.c
| | -——— fibonacci.h
| | -——— fibonacci-1lib.bb
| \-- Makefile
\-- fibonacci-srv
| -——— fibonacci-srv.bb
| -—— fibonacci-srv.init
| -——— fibonacci-srv.service
| -——— fibonacci-srv-tcp
| -——— fibonacci-srv-tcp.c
| -—— fibonacci-srv-unix

| -——— fibonacci-srv-unix.c
| -——— Makefile
\-- Makefile.all

Packaging

« Packaging is the process of putting artifacts from the build output into
one or more packages for installation by a package management
system.

- Packaging is performed by the package management classes:
* package rpm— RPM style packages
* package deb — Debian style packages
* package ipk — IPK package files used by the OPK package manager

* You configure the package managementin conf/local.conf:
PACKAGE CLASSES ?= "package rpm"

* You can add more than one of the package classes.

* Only the first one will be used to create the root file system.

« However, this does not install the package manager itself.

« Install the package manager in conf/local.conf:

EXTRA IMAGE FEATURES ?= "package-management"

Package Splitting

« Packaging Splitting is the process of putting artifacts from the build
output into different packages.

« Package splitting allows you to select what you need to control the
footprint of your root file system.

« Package splitting is controlled by the variables:
« PACKAGES — list of package names, default:

PACKAGES = "S${PN}-dbg ${PN}-staticdev ${PN}-dev S${PN}-doc \
${PN}-locale ${PACKAGE BEFORE PN} ${PN}"

« FILES — list of directories and files that belong into the package:

SOLIBS = "*.so.*"

FILES ${PN} = "${bindir}/* ${sbindir}/* ${libexecdir}/* \
${libdir}/lib* {SOLIBS} ${sysconfdir} ${sharedstatedir} \
${localstatedir} ${base bindir}/* ${base sbindir}/* \
${base libdir}/*${SOLIBS} ${base prefix}/lib/udev/rules.d \
S{prefix}/lib/udev/rules.d ${datadir}/S{BPN}\
${libdir}/${BPN}/* ${datadir}/pixmaps \
S{datadir}/applications ${datadir}/idl ${datadir}/omf \
S${datadir}/sounds ${libdir}/bonobo/servers"

Yocto Project | The Linux Foundation

Package Splitting - Continued

« The package classes process the PACKAGES list from left to right,
producing the s { PN} -dbg package first and the s { PN} package last.

« The order is important, since a package consumes the files that are
associated with it.

 The s${PN} package is pretty much the “kitchen sink”: it consumes all
standard leftover artifacts.

- BitBake syntax only allows prepending (+=) or appending (=+) to
variables:

 Prepend PACKAGES — place standard artifacts into different packages

 Append PACKAGES — place any leftover packages in non-standard
installation directories those packages.

- The variable PACKAGE BEFORE PN allows you to insert packages
right before the $ { PN} package is created.

Packaging QA

* The insane class adds plausibility and error checking to the packaging
process.

* You can find a list of the checks in the Reference Manual:
http://www.yoctoproject.org/docs/2.4/ref-manual/ref-manual.html#ref-classes-insane

« Some of the more common ones:
 already-stripped — debug symbols already stripped

« installed-vs-shipped — checks for artifacts that have not been
packaged

- 1dflags — checks if LorrLaGs for cross-linking has been passed

« packages-list —same package has been listed multiple times in
PACKAGES

« Sometimes the checks can get into your way...
* INSANE SKIP <packagename> += "<check>"

« Skips <check> for <packagename>.

http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane
http://www.yoctoproject.org/docs/2.3/ref-manual/ref-manual.html#ref-classes-insane

Example — The Fibonacci Library

Source code in /scratch/src/userspace/fibonacci/fibonacci-lib

« Builds static and dynamic libraries to calculate the Fibonacci series and an
application to test it.

Create development environment in the project

* devtool add fibonacci-1lib /scratch/src/userspace/fibonacci/fibonacci-
1lib

Build the recipe

. devtool build fibonacci-1lib

Add to your image (conf/local.conf): (vi: EoD = ‘G)

IMAGE INSTALL append = " fibonacci-1lib"

Build and test image (exit with CTRL-A,X)

e devtool build core-image-minimal

* rungemu gemuarm nographic

root@gemuarm:~# fibonacci
Enter the number of terms: 4

First 4 terms of Fibonacci series are:
011 2

Example — The Fibonacci Library (continued)

° EdﬁtheFECKKEmeta—uspapps/recipes/fibonacci—lib/fibonacci—lib.bb
and place the fibonacci test application into its own package s {pn} -

examples
o PACKAGE BEFORE PN = "S$S{PN}-examples"
FILES ${PN}-examples = "S{bindir}/fibonacci"

* Add to your image (conf/local.conf):

IMAGE INSTALL append = " fibonacci-lib fibonacci-lib-examples"

* Build and test image
* Dbitbake core-image-minimal

* rungemu gemuarm nographic

« See the new package (optional):

« find tmp/work -name "*fibonacci-example**
tmp/work/armv5e-poky-linux-gnueabi/fibonacci-lib/1.0-r0/pkgdata/runtime-reverse/libfibonacci-
examples
tmp/work/armv5e-poky-linux-gnueabi/fibonacci-lib/1.0-rO/deploy-rpms/armv5e/libfibonacci-
examples-1.0-r0.armvb5e.rpm

* Note: Automatic ‘debian.bbclass’ is renaming the PACKAGE ‘fibonacci-lib’ to RPM ‘libfibonaccr’

Package Installation Scripts

« Package management systems have
the ability to run scripts before and
after a package is installed, upgraded,
or removed.

pkg postinst ${PN} () {
#!/bin/sh
shell commands go here

« These are typically shell scripts and }

they can be provided by the recipe
using these variables:

* pkg preinst <packagename>:

Script Skeleton

Preinstallation script that is run
before the package is installed.

pkg postinst <packagename>:
Postinstallation script that is run after
the package is installed.

pkg prerm <packagename>:Pre-
uninstallation script that is run before
the package is uninstalled.

pkg postrm <packagename>!
Post-uninstallation script that is run
after the package is uninstalled.

pkg postinst S${PN} () {

#!/bin/sh

if [x"S$D" = "x"]; then
target execution

=l

build system execution

fi
}

Conditional Execution

Example — Conditionally running ldconfig

« The Fibonacci library installs a dynamic library 1ibfibonacci.so.1.0
on the target systemin /usr/1ib.

* For 14 to be able to locate the library it must be added to the Id cache
and its symbolic name (soname) must be linked. That is done by
running 1dconfig On the target.

« Add a post installation script to the s {pn} package that only runs
1dconfig when it is run on the target but not when the build system
creates the root file system (CURRENT DEFAULT BEHAVIOUR).

pkg postinst S${PN} () {

#!/bin/sh

if [x"$D" = "x"]; then
target execution
ldconfig
exit O

else
build system execution
exit 1

fi

}

Yocto Project | The Linux Foundation

Installation for Packaging

Makefile Installation

INSTALL ?= install
.PHONY: install
Install:
S (INSTALL)
$ (INSTALL)

-d $(DESTDIR) /usr/bin
-m 0755 $ (TARGET)

S (DESTDIR) /usr/bin

Recipe Installation

Providing/overriding the do_install task

do install() {

install —-d ${D}S${bindir}
install -m 0755 ${B}/bin/* ${D}{bindir}

The build system defines a series of variables for convenience:

bindir = "/usr/bin"
sbindir = "/usr/sbin"
libdir = "/usr/lib™
libexecdir = "/usr/lib"

sysconfdir = "/etc/"

datadir = "/usr/share"
mandir = "/use/share/man™"
includedir = "/usr/include"

Yocto Project | The Linux Foundation

Debugging Packaging

« Check the packaging logfiles in $ {WORKDIR}/temp

* Check installation of artifacts in s {WORKDIR}/image
« The do_install task installs the artifacts into this directory.
« If artifacts are missing they are packaged.

« Check packaging artifacts in $ {WORKDIR} /package

« This where the artifacts are staged for packaging, including the ones
created for the debug packages.

* Check package splitting in $ {WORKDIR} /packages-split

« Packages and their content are staged here by package name before they
are wrapped by the package manager.

« Allows you to verify if the artifacts have indeed been placed into the
correct package.

« Check created packages in $ {WORKDIR}/deploy-<pkgmgr>

Package Architecture

* The build system distinguishes packages by their hardware
dependencies into three main categories:

 Tune — Generic CPU architecture such as core2_32, corei7, armv7, etc.
This is the default and typically appropriate for userspace packages.

« Machine — Specific machine architecture. Appropriate for packages that
require particular hardware features of a machine. Typically applicable to
kernel, drivers, and bootloader.

« All — Package applies to all architectures such as shell scripts, managed
runtime code (Python, Lua, Java, ...), configuration files, etc.

» Package architecture is controlled by the pAckaGE aRrcH variable:
* Tune (default) — PACKAGE ARCH = "S${TUNE_ PKGARCH}"
 Machine — PACKAGE ARCH = "S${MACHINE ARCH}"
e All—inherit allarch

* Note: Package architecture does not simply determine into what
category a package is placed but determines compiler and linker flags
and other build options.

System Services

- If your software package is a system service that eventually needs to be
started when the system boots you need to add the scripts and service
files.

* SysVinit
* Inherit update-rc.d class.

* INITSCRIPT PACKAGES - List of packages that contain the init scripts for this
software package. This variable is optional and defaults to
INITSCRIPT PACKAGES = "S${PN}".

 INITSCRIPT NAME - The name of the init script.

« INITSCRIPT PARAMS - The parameters passed to update-rc.d. This can be
a string such as "defaults 80 20" to start the service when entering run
levels 2, 3, 4, and 5 and stop it from entering run levels 0, 1, and 6.

« Systemd
* Inherit systemd class.

* SYSTEMD PACKAGES - List of packages that contain the systemd service files
for the software package. This variable is optional and defaults to
SYSTEMD PACKAGES = "${PN}".

* SYSTEMD SERVICE - The name of the service file.

Example — The Fibonacci Server

« Source code in /scratch/src/userspace/fibonacci/fibonacci-srv

» Builds a TCP socket server listening on port 9999 for the number of terms and responds with the
list of Fibonacci terms.

* Create development environment
. cd /scratch/poky/build
. devtool add fibonacci-srv /scratch/src/userspace/fibonacci/fibonacci-srv

« Add system service startup to the recipe
meta-uspapps/recipes/fibonacci-srv/fibonacci-srv.bb

inherit update-rc.d systemd

INITSCRIPT NAME = "fibonacci-srv.init"
INITSCRIPT PARAMS = "start 99 3 5 . stop 20 0 1 2 6 ."
SYSTEMD SERVICE = "fibonacci-srv.service"

* Build the recipe

. bitbake fibonacci-srv

« Add to your image (conf/local.conf):

IMAGE INSTALL append = " fibonacci-srv"

« Build and test image
. bitbake core-image-minimal
. rungemu gemuarm nographic
. nc localhost 9999

Yocto Project | The Linux Foundation

Changing the System Manager

« SysVInit is the default system manager for the Poky
distribution.

* To use systemd add it to your conf/local.conf file, or
better, to your distribution configuration:

DISTRO_FEATURES append = " systemd"

VIRTUAL-RUNTIME init manager = "systemd"

* If you exclusively want to use systemd, you can remove
SysVInit from you root file system image with:

DISTRO FEATURES BACKFILL CONSIDERED = "sysvinit"

VIRTUAL-RUNTIME initscripts = ""

Yocto Project | The Linux Foundation

License Compliance and Auditing

Beth ‘pidge’ Flanagan and Paul Barker

Togan Labs Ltd.

Yocto Project | The Linux Foundation

License Compliance and Auditing

Togan Labs Ltd

* Ireland/UK based Embedded Consultancy
* Oryx Linux and Oryx Linux Plus

* OpenChain Partner

* Made up of OpenEmbedded/Yocto Project Developers

* We REALLY like License Compliance /)
(/ e
),

ToganlLabs

License Compliance and Auditing - Overview

Topics

meta-wrong recipes

* bad-chksum

* bad-license-mix
* closed-app

* hello-lib

* mit-app

* shotgun-lic

* use-hello-lib

bad-chksum

bitbake bad-chksum -f -c cleanall

bitbake bad-chksum

bad-chksum

Two issues (one, not so obvious)

bad-chksum

Two issues (one, not so obvious)

- Bad checksum

- more ../conf/distro/wrong.conf
* license-checksum in WARN_QA

* devs tend to ignore bb.warns

closed-app

bitbake closed-app -f -c cleanall

bitbake closed-app

closed-app

Again, two issues (one, not so obvious)

closed-app

Again, two issues (one, not so obvious)

- build/tmp/work/armvae-poky-linux-gnueabi/closed-
app/1.0.0-r0/closed-app-1.0.0/app.py

* wrong license

- look at recipe
* specifically the LIC_FILES CHKSUM
* CLOSED ignores checksum

closed-app

A short diversion....
« CLOSED is not a license

* it’s being used as a lazy way to subvert some QA warnings

* Use at your peril

bad-license-mix

more bad-license-mix/bad-license-mix_1.0.0.bb

bad-license-mix

LICENSE = "CLOSED & GPLv2"
- theoretically possible
- but we need to look at the code

more tmp/work/armvae-poky-linux-gnueabi/bad-license-
mix/1.0.0-r0/bad-license-mix-1.0.0/app-closed.py

more tmp/work/armvae-poky-linux-gnueabi/bad-license-
mix/1.0.0-r0/bad-license-mix-1.0.0/app.py

bad-license-mix

Solution here?

- Developer open source training

- This can sometimes be difficult to catch with copy-paste
code

shotgun-lic

more shotgun-lic/shotgun-lic_1.0.0.bb

shotgun-lic

more shotgun-lic/shotgun-lic_1.0.0.bb
- LICENSE is theoretically valid

- gold star for

* LICENSE PATH +="${LAYERDIR}/files/licenses" in
layer.conf

* Not using CLOSED for MyWeirdProprietaryLicense

Let’s look at the source!

shotgun-lic
tmp/work/armvbe-poky-linux-gnueabi/shotgun-lic/1.0.0-
ro/shotgun-lic-1.0.0

- Two license files
* COPYING
* MyWeirdProprietaryLicense

- Let's look at the code in random_lib and
another_random_lib

shotgun-lic

Uhhh....
- Which files are which license?
- Why not use DEPENDS?

* Sometimes valid reasons why you don't
- don’t control upstream source
- but this is non-distributable

mit-app

bitbake mit-app -f -c cleanall

bitbake mit-app

mit-app

No errors!
But does this mean nothing is wrong...?

This is where license scanning helps you!

mit-app

Two files:

- app.py
 LIC FILES CHKSUM looks at this
* License is correct

- local _lib.py
* Notcovered by LIC_FILES CHKSUM
* Contains a GPLv2 header

The application needs fixing!

hello-lib & use-hello-lib

bitbake hello-lib -f -c cleanall

bitbake use-hello-lib -f -c cleanall

bitbake use-hello-lib

hello-lib & use-hello-lib

No errors again!

But let's look closer...

hello-lib & use-hello-lib

Licenses:

= hello-lib: LGPLv2
* contains hello_lib.py

- use-hello-lib: CLOSED

* imports hello_lib

- Valid usage of an LGPL library

hello-lib & use-hello-lib

Let’s look deeper:

- hello-lib contains hello_lib.py
* License headeris GPLv2 not LGPLv2

* This is the sort of issue license scanning will detect

- So let's fix hello-lib_1.0.0.bb:
* LICENSE = "GPLv2"

bitbake use-hello-lib (again)

hello-lib & use-hello-lib

Still no errors...

- But using GPLv2 library from a closed app is not valid
- License scanning tools won't catch this

- This is where you need to use judgement or legal advice

meta-spdxscanner

* Using the Togan Labs fork of meta-spdxscanner
- https://gitlab.com/toganlabs/meta-spdxscanner
- requires meta-gplv2

* Not a fan of DoSOCSv2, looking at moving
- scancode

- fossology
* Want to help? pidge@toganlabs.com

meta-spdxscanner

* spdx-runs/gobject-introspection.spdx
- find PackageLicenselnfoFromFiles

* the license of source and the license of package is
usually different

- This is ok
- Things we don’t ship (setup.py)

- But we need to compare LICENSE to what we
see here.

meta-spdxscanner

* recipe states
- LICENSE = "LGPLv2+ & GPLv2+"

* scan states

meta-spdxscanner

* recipe states
- LICENSE = "LGPLv2+ & GPLv2+"

* scan states

- GPL-3.0+ & LicenseRef-Freeware & LicenseRef-
MIT-style & LicenseRef-Public-domain &
LicenseRef-See-file & X11 & GPL-2.0 & GPL-2.0-
with-autoconf-exception & LGPL-2.0 & LGPL-
2.1+ & LicenseRef-GPL-3.0+-with-bison-
exception & MIT & BSD-2-Clause &
LicenseRef-See-doc.OTHER & LicenseRef-GPL-

exception & GPL-2.0+ & LicenseRef-FSF &
LGPL-2.0+

meta-spdxscanner

* Find the GPL files!
- What is scannerparser.c

* Look in the source, see If it's something we distribute
- if so, we need to fix the LICENSE

- maybe on a package layer
* LICENSE_${PN}-dbg

License Auditing and Compliance

Q&A

Yocto Project | The Linux Foundation

CROPS
Tim Orling, Brian Avery, Randy Witt, David Reyna

Yocto Project | The Linux Foundation

CROPS: Containers for Yocto Project

* CROss PlatformS (CROPS)* provides a consistent
developer experience across Windows, Mac OS X and
Linux distros through the use of containers

 Why Containers?
« Avoid host contamination
e Easy route to multiple OS support, including Linux!
* Repeatable builds
« Fewer Linux distros to test
« A path to tools in the cloud

*The instructor also thinks of it as Containers Run Other People’s Software

CROPS: Available Today

« crops/extsdk-container
« Container that can support Extensible SDKs
* Also supports standard SDKs

e crops/toaster
« Latest released version of toaster/poky currently pyro

* Cro pS/tO aster-master

« Keeps up with the current master of toaster/poky, kicked off via webhook
So it's quite up to date.

* crops/poky

« This is an Ubuntu (or other distro) container with the necessary packages
to run poky installed, but not poky itself.

« To run poky, you need a copy of it on your file system which you then map
into the container.

« This will work equally well for poky or an install of oe-core.

CROPS: Setup Docker

 |nstall Docker

« For Linux, Docker is typically available via the distro package
manager, otherwisw go to the Docker web site:
https://docs.docker.com/engine/installation/linux/

* For Windows and Mac, follow the CROPS Instructions here:
https://github.com/crops/docker-win-mac-docs/wiki

* Note: crops/samba container

* One of the nice features for windows/mac is the
crops/samba container that exposes the docker volume to
the host side via samba/cifs . This works around the fact that
neither the windows nor mac filesystems have sufficient
features to support a bitbake build. The docker volume is
persistent just like a directory on a linux host would be.

https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://docs.docker.com/engine/installation/linux/ubuntulinux/
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki
https://github.com/crops/docker-win-mac-docs/wiki

CROPS: eSDK First Time

 Follow the instructions at:
https://github.com/crops/extsdk-container

 Linux:
$ docker run --rm -it -v /home/myuser/sdkstuff:/workdir
crops/extsdk-container --url
http://someserver/extensible sdk installer.sh

« Windows:
$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container
--url http://someserver/extensible sdk installer.sh

« Mac OS X:

$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container
--url http://someserver/extensible sdk installer.sh

https://github.com/crops/extsdk-container/blob/master/README.md
https://github.com/crops/extsdk-container/blob/master/README.md
https://github.com/crops/extsdk-container/blob/master/README.md
http://someserver/extensible_sdk_installer.sh
http://someserver/extensible_sdk_installer.sh
http://someserver/extensible_sdk_installer.sh
http://someserver/extensible_sdk_installer.sh

CROPS: eSDK “--url” command

* The “--url” tells the CROPS eSDK container where to
find the eSDK

« That can be a website or you could copy into the
container’s workdir, and use:

--url=file:///workdir/extensible sdk installer.sh
or even —url=/workdir/extensible sdk installer.sh

« On Mac OS X or Windows, that would be provided via
the Samba connection

A useful CROPS eSDK command is “--help”
« This will print out all the startup options for the container.

file://workdir/extensible_sdk_installer.sh
file://workdir/extensible_sdk_installer.sh
file://workdir/extensible_sdk_installer.sh

CROPS: Example eSDK on Mac OS X
« The first time, follow the CROPS Mac OS X install

Instructions

« Download the eSDK:

S wget http://downloads.yoctoproject.org/releases/yocto/milestones/\
yocto-2.4 M3/toolchain/x86 64/ \
poky-glibc-x86 64-core-image-sato-armvbSe-toolchain-ext-2.3.sh

Create volume and run the samba container:

S docker volume create --name myvolume
$ docker run -it --rm -v myvolume:/workdir busybox \
chown -R 1000:1000 /workdir

$ docker create -t -p 445:445 --name samba -v myvolume:/workdir crops/samba

S docker start samba

Yocto Project | The Linux Foundation

CROPS: Example eSDK on Mac OS X

« Mac OS X specific workaround (not on Windows):

« OS X will not let you connect to a locally running samba
share. Therefore, create an alias for 127.0.0.1 of 127.0.0.2.

$ sudo ifconfig 1lo0 127.0.0.2 alias up

 Open the workdir with file browser:

* Open Finder, then hit 'Command-K'. In the "Server Address"
box type smb://127.0.0.2/workdir and click "Connect".

 Copy the eSDK installer to the workdir:

$ cp ~/Downloads/poky-glibc-x86 64-core-image-sato-armv5e-toolchain-ext-2.3.sh \
/Volumes/workdir/

Yocto Project | The Linux Foundation

CROPS: Example eSDK on Mac OS X

* Run the container:

$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container \
--url file:///workdir/poky-glibc-x86 64-core-image-sato-armvbSe-toolchain-ext-2.3.sh

workdir$. ./environment-setup-armv5e-poky-linux-gnueabi
workdir$ touch hello.c

* In Finder view, right click on hello.c and edit in your
favorite editor (e.g. Visual Studio Code)

#include <stdio.h>

int main(void)

{
printf ("Hello, Prague 2017!'\n");
return O;

Yocto Project | The Linux Foundation

CROPS: Example eSDK on Mac OS X

« Compile and examine:

/workdir$ $CC hello.c
/workdir$ file a.out

a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically linked,
interpreter /lib/ld-linux.so.3, for GNU/Linux 3.2.0,
BuildID[shal]=17bdf1d27076e3e579c20007£60397c96984a012, not stripped

/workdir$ exit

Yocto Project | The Linux Foundation

CROPS: Example eSDK on Mac OS X, Second Time

 When you close and then reopen Docker, you will
need to restart samba

$ # Restart the Samba container

$ docker start samba

$

$ # The eSDK is already extracted in the eSDK container, so no “--url”
$ docker run --rm -it -v myvolume:/workdir crops/extsdk-container

Yocto Project | The Linux Foundation

CROPS: Example Toaster on Mac

* Run the container:

$docker run --rm -it -v myvol:/wd -p 127.0.0.1:12000:8000 crops/toaster \
--workdir=/wd

Shell environment set up for builds.

Check if toaster can listen on 0.0.0.0:8000

OK

Running migrations:
No migrations to apply.
Starting webserver. ..
Webserver address: http://0.0.0.0:8000/
Successful start.

toasteruser@f07ebe8bl0fe: /workdir/build$

Yocto Project | The Linux Foundation

CROPS: Example Poky on Mac

* Run the container:

docker run --rm -it -v pokyvol:/wd crops/poky --workdir=/wd
pokyuser@5451bf7edfec: /wd$ 1s

pokyuser@5451bf7edfec: /wd$ git clone git://git.yoctoproject.org/poky
Cloning into 'poky'...

remote: Counting objects: 354342, done.

remote: Compressing objects: 100% (85618/85618), done.

remote: Total 354342 (delta 263023), reused 353729 (delta 262410)
Receiving objects: 100% (354342/354342), 130.36 MiB | 11.28 MiB/s, done.
Resolving deltas: 100% (263023/263023), done.

Checking connectivity... done.

pokyuser@5451bf7edfec: /wd$. ./poky/oce-init-build-env

pokyuser@5451bf7edfec: /wd/build$

Yocto Project | The Linux Foundation

CROPS: Toaster and Poky

The CROPS Poky can be found here:

https://nub.docker.com/r/crops/poky/

The CROPS Toaster release can be found here:

https://hub.docker.com/r/crops/toaster/

The CROPS extsdk-container can be found here:

https://hub.docker.com/r/crops/extsdk-container/

https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/
https://hub.docker.com/r/crops/toaster/

CROPS: Future

- Target for 2.5 1s an Eclipse environment where no
Yocto Project specific plugin is needed. We are
actively working with upstream Linux Tools/Docker
Tools and CDT (C/C++ Development Tools).

 The Yocto Project magic will be in the metadata inside
the toolchain container.

« This approach is also expected enable remote/Cloud
Docker container instances.

 Some of the required upstream functionality expected
to be in a December point release of CDT & Linux
Tools.

CROPS: Reference

* You can use the Docker infrastructure (docker commit
to an image, docker save to atar.gz) to capture your
container and pass it to others for exact analysis, for
example for errors and regressions.

CROPS: Call to Action

* Users are typically able to get Docker and CROPs up
and running on a Mac OS X or Windows host in less
than 30 minutes, most of that is the Docker and
CROPS container installation time.

« See If you can do that as fast on your host today or
this week, and build and run “hello.c”.

Reference

« The CROPs community is very active. Here is how you can
update your cached containers:

docker pull crops/extsdk-container

docker pull crops/poky

docker pull crops/toaster

* Here is a quick “hello.c” for your eSDK container

#include <stdio.h>

int main(void)

{
printf ("Hello Berlin 2016!'\n");
return 0;

 Lead Developers:

randy.e.witt@intel.com
brian.avery@intel.com

Yocto Project | The Linux Foundation

mailto:randy.e.witt@intel.com
mailto:brian.avery@intel.com

Resources

Randy Witt’s ELC Presentation (this is a must see):
e https://elinux.org/imaqges/9/94/2017 ELC - Yocto Project Containers.pdf
e https://www.youtube.com/watch?v=JXHLAWveh7Y

Yocto Project Dev Day Portland, 2017 Presentation (Windows):

o https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto DevDay Advanced Class Portl
and.pdf

Github:
e https://github.com/crops

Docker Hub:
e https://hub.docker.com/r/crops

Freenode IRC:
e #HCrops

https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://elinux.org/images/9/94/2017_ELC_-_Yocto_Project_Containers.pdf
https://www.youtube.com/watch?v=JXHLAWveh7Y
https://www.youtube.com/watch?v=JXHLAWveh7Y
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://wiki.yoctoproject.org/wiki/images/f/f6/Yocto_DevDay_Advanced_Class_Portland.pdf
https://github.com/crops
https://github.com/crops
https://hub.docker.com/r/crops
https://hub.docker.com/r/crops

Maintaining Your Yocto Project Based Distribution

Scott Murray

Yocto Project | The Linux Foundation

Goals

« Lay out some of the distribution maintenance options
and their tradeoffs

* Discuss some potential pitfalls that may not be
Immediately obvious

* Discuss some specific build, security, and
compliance maintenance tasks

Caveats

* I've done several distribution upgrades for customers,
a few major and a few minor, but their requirements
might not reflect yours, and my decisions and advice
shouldn't be taken as gospel

« Every project has its own business requirements that
will drive the decisions on things like upgrade
strategy and schedule

Distribution Maintenance Requirements

 Most users of the Open Embedded and the Yocto
Project poky releases are building sophisticated
products that contain a lot more software than
embedded systems of the past

« With extra software and features, there is an
Increased need to address bugs and security issues,
especially with more and more products including
network accessible services

« Itis now rare that you can sell a product and not have
to worry about providing customers some form of
software maintenance scheme

Distribution Maintenance Planning

At the moment, Yocto Project releases receive one to
two years of upstream support, as only the last three
releases are maintained by the project

« There are no long term releases (at the moment)

* S0, you need to consider a commercial support
solution (Wind River, Mentor, etc.), or you need to
plan on doing it yourself

Distribution Maintenance Planning (continued)

There are two approaches to maintaining your distribution
yourself:

« Stay on the proverbial upgrade treadmill and track Yocto Project
releases

« Stick with a Yocto Project release and backport changes as
required

The first option requires an investment into tracking
upstream that may be a change for some companies'
development process

The difficulty of the second option starts to scale
significantly with a larger number of packages and
Increasing length of time after release

Upgrade frequency could be gated by your customer
requirements, i.e. they may not want or be able to take
upgrades quickly. This might influence your decision..

Yocto Project Release Tracking

 The selection of release at project start, or as a target
for an upgrade affects the maintenance effort going
forward

 The general recommendation from the community is
to track master up until the Yocto Project release just
before your target product release date

* This maximizes upstream support

« A common behavior is to start a project using the
release available at the time, this is less desirable, as
It means you are losing some or all of the benefit of
the upstream support window

Backport Packages or Patches?

« The community strategy is to backport patches to fix
bugs or security issues, rather than upgrading
packages to new versions in stable Yocto Project
releases

* This may not work for some product requirements
when you are doing the maintenance yourself
e Security team requirements, e.g. checking tools looking for
specific versions, or customer optics
* OpenSSL, OpenSSH, libxml2, etc.

 Demand for new features provided by a new version of a
package

Recipe Backporting Tips

« If backporting recipes for package upgrades, keep
them in a separate layer from the rest of your
distribution recipes

« Avoids cluttering your actual distribution layer with hopefully
temporary cruft

« And keeps your distribution layer in compliance with Yocto
Project expectations

* On adistribution upgrade, you'll need to rationalize
changes, and potentially remove now unnecessary
backports

* Dbitbake-layers show-overlayed

Vendor BSP Layers

 May tie you to a Yocto Project release unless you can
Invest the required effort into upgrading yourself

« May have arelease schedule that gates upgrades
« e.g. meta-ti, meta-renesas

 May provide an older kernel that gates upgrading
other packages

* It's not always feasible, but sticking to a BSP layer
that meets Yocto Project BSP requirements can
hopefully avoid issues

Other Layers

May not have release branches, and float on master

* This can cause compatibility problems if you want to use
them with an older release

May be intermittently maintained

Do some research

* Look at the layer's commit history to see how actively it is
maintained

« Ifit's hosted on github, look at activity and rating there

Forewarned is forearmed, you want to avoid surprises
during future upgrades

Maintaining Local Configuration

- Keep your local metadata configuration (BSP and
machine, distribution, etc.) in your own set of layers

* Note that they do not necessarily need to be in separate git
repositories, but doing so can keep change history clearer

« Think about using tools for layer repository
management such as Android repo, myrepo, Wind
River's setuptool, etc., and planning ahead on having
a branching and release strategy for metadata
repositories

« Makes checkout and build more straightforward

« In addition to facilitating tracking your product releases, this
allows upgrade development on a branch

Distribution Configuration Tips

* Avoid local changes to oe-core, meta-poky, etc. if at
all possible
« |f something cannot be accomplished with a bbappend, it is
better to work with upstream to try to come up with a

solution, as carrying such changes is just one more thing
that can become a time sink on a future upgrade

* Look at pushing new recipes for FOSS packages
upstream to increase the eyes looking at it and get
feedback

* Increases probability of things "just working" on upgrade

« But don't just throw it over the wall, seriously consider
signing up as maintainer of whatever you upstream

Distribution Configuration Tips (continued)

- Attempt to minimize local configuration changes

« This can be tough since there is a tension between required local
customizations and associated potential maintenance burden

« Some simple changes can give surprising problems on
upgrade

« e.g. Changes to fsperms.txt, base-files can later result in
packaging errors that do not immediately seem related

 Changes you may need for functional requirements can
result in significant effort being required down the road
« e.g. FIPS support. If you locally bbappend the RedHat set of

OpenSSL patches, keeping things building can be time-
consuming

Distribution Configuration Tips (continued)

Some tools/projects can increase the burden of doing an
upgrade

e e.g.node.js, ruby, rust, go

* If you have any local recipes to add modules, dependencies can drive
recipe upgrades you might have not expected to need to do

« as well, backporting a recipe for a package based on one of
these might have a significant ripple effect

gcc upgrades can be painful if you have much in-house software

« Recent releases have been significantly improving warnings, which is
a problem if you use/rely on -Werror

* I've done a few upgrades where the effort required to fix in-house
code issues outweighed that required for uprading the YP release by
several times

« If you're staying on the upgrade treadmill, it's possible you may hit this
every couple of years, as the pace of gcc releases has increased, and
OE only carries recipes for two gcc version branches at a
time. Forward porting gcc recipes is involved and considered a bad
strategy

Preparing for a Distribution Upgrade

« Can be difficult resource-wise, but consider regularly
test building against master

e Gives a heads up on changes that impact your build

 |If you have robust upgrade strategy and are doing regular
product updates, having it be part of your workflow should
ease keeping up as opposed to coming in completely fresh
on a new YP release

 Look at yoctoproject.org documentation on per-
release changes

e http://www.yoctoproject.org/docs/current/ref-manual/ref-
manual.html#migration

http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration
http://www.yoctoproject.org/docs/current/ref-manual/ref-manual.html#migration

Build-related Maintenance

* For reproducibility and disaster recovery, it is useful
to archive build output such as images and SDKs
« If you make use of SDKs, it iIs common to have significant
churn during development as additions are made. Using the
SDK_VERSION variable to number your internal SDK
releases can help with reproducibility

* Archiving the downloads directory for use as a source
pre-mirror can be quite useful

* |n some organizations, doing so can be required for either
reproducibility or for building on systems without network
access

* You may need to investigate tools for binary storage to
reduce disk space usage

Security-related Maintenance

Security fixes are a likely source of pressure for maintenance
releases, knowing what possible issues affect your distribution is
extremely valuable

Morty and newer releases have cve-check.bbclass, which uses cve-
check-tool to check built packages for CVEs

* Not hard to port back to older YP releases
* Note that there is ongoing discussion about the need for a better scanning tool

The yocto-security mailing list is used to notify about high profile
security fixes

« Should soon also act as a source of notifications about labelled CVE security
fixes coming into the supported releases

Otherwise, you'll need to rely on sources such as:

e cve.mitre.org

* cvedetails.com

« Other Linux distributions' (RedHat, Debian, etc.) security notification sites

Compliance-related Maintenance

Planning for source and build system release upfront can
save a lot of anxiety later

It is recommned that you use the provided license

publishing and source archiving tools

* http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
manual.html#maintaining-open-source-license-compliance-during-
your-products-lifecycle

* You may need to post-process the output to match your legal
team's requirements, it is better to have an idea of what those are
as early as possible

Similar to archiving of the downloads directory, keeping

source archiving enabled and storing the output may be

easier than doing special compliance collection builds, if
you can manage the space requirements

http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#maintaining-open-source-license-compliance-during-your-products-lifecycle

References

« Best Practices to Follow When Creating Layers

http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
manual.html#best-practices-to-follow-when-creating-layers

« Making Sure Your Layer is Compatible With Yocto Project

http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
manual.html#making-sure-your-layer-is-compatible-with-yocto-
project

http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#best-practices-to-follow-when-creating-layers
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-
http://www.yoctoproject.org/docs/2.3.2/dev-manual/dev-manual.html#making-sure-your-layer-is-compatible-with-yocto-project

Kernel Modules with eSDKs
Marco Cavallini

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Overview

 The Extensible SDK (eSDK) is a portable and
standalone development environment , basically an
SDK with an added bitbake executive via devtool.

 The “devtool” is a collection of tools to help
development, in particular user space development.

 We can use devtool to manage a new kernel module:

« Like normal applications is possible to import and create a
wrapper recipe to manage the kernel module with eSDKs.

Kernel modules with eSDKs —
Compiling a kernel module

« We have two choices

« Qut of the kernel tree

 When the code is in a different directory outside of the
kernel source tree

 |Inside the kernel tree

 When the code is managed by a KConfig and a Makefile
Into a kernel directory

Kernel modules with eSDKs —
Pro and Cons of a module outside the kernel tree

When the code is outside of the kernel source tree in
a different directory

Advantages

—- Might be easier to handle modifications than modify it into
the kernel itself

Drawbacks

- Not integrated to the kernel configuration/compilation
process

- Needs to be built separately
- The driver cannot be built statically

Kernel modules with eSDKs —
Pro and Cons of a module inside the kernel tree

When the code is inside the same directory tree of
the kernel sources

Advantages

- Well integrated into the kernel configuration and
compilation process

— The driver can be built statically if needed

Drawbacks

—- Bigger kernel size

— Slower boot time

Kernel modules with eSDKs — The source code

#include <linux/module.h>
#include <linux/kernel.h>

static int __ init hello init(void)

{

printk ("When half way through the journey of our life\n");
return O;

}

static void _ exit hello exit(void)

{

printk ("I found that I was in a gloomy wood\n") ;
}

module init(hello init);
module exit (hello exit);

MODULE LICENSE ("GPL") ;
MODULE DESCRIPTION ("Greeting module from the Divine Comedy") ;
MODULE AUTHOR ("Dante Alighieri");

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — The Makefile

obj-m += hellokernel.o
SRC := $(shell pwd)

all:
$ (MAKE) -C $ (KERNEL SRC) M=$ (SRC) modules

modules install:
$ (MAKE) -C $(KERNEL SRC) M=$ (SRC) modules install

« KERNEL_SRC is the location of the kernel sources.

* This variable is set to the value of the STAGING_KERNEL_DIR
within the module class (module.bbclass)

« Sources available on https://github.com/koansoftware/simplest-
kernel-module.qit

Kernel modules with eSDKs — Devtool setup

- Start a new Shell! Otherwise, the existing bitbake environment can cause
unexpected results

« Here is how the eSDK was prepared for this class account:

< DO NOT ENTER THE FOLLOWING COMMANDS : ALREADY EXECUTED >

$ cd /scratch/working/build/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-armv5e-toolchain-ext-2.4.sh \
-d /scratch/sdk/gemuarm -y

e This installed the eSDK into:

/scratch/sdk/gemuarm

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Overview

« Starting from now we are using the eSDK and not the project

« During this exercise we using two different machines
« The HOST containing the eSDK (providing devtool)
« The TARGET running the final gemuarm image

eSDK:~$

Host

Target

root@gemuarm:~$

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Globalsetup

« Open two terminal windows and setup the eSDK environment in each
one

$ source /scratch/sdk/gemuarm/environment-setup-armv5e-poky-linux-gnueabi

« SDK environment now set up
« Additionally you may now run devtool to perform development tasks.

* Run devtool --help for further details

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — build the target image

« Open two terminal windows and setup the eSDK environment in each
one

$ devtool build-image

« This will create a new image into.

[/scratch/sdk/gemuarm/tmp/deploy/images/gemuarm

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — build the target image

* Run the image to check if everything is OK
* This will run the Qemu machine in the TARGET shell you were using

« Login using user : root (no password required)

$ rungemu gemuarm nographic

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Hooking a new
module into the build

 Run the devtool to add a new recipe (on the HOST side)

$ devtool add --version 1.0 simplestmodule \
/scratch/src/kmod/simplest-kernel-module/

« This generates a minimal recipe in the workspace layer

 This adds EXTERNALSRC in an
workspace/appends/simplestmodule_git.bbappend file that points
to the sources

* |n other words, the source tree stays where it is, devtool just
creates a wrapper recipe that points to it

Note: this does not add your image to the original build engineer’s image, which
requires changing the platform project’s conf/local.conf

Yocto Project | The Linux Foundation

After the add

Workspace layer layout

$ tree /scratch/sdk/gemuarm/workspace/

/scratch/sdk/gemuarm/workspace/

— appends
| L— simplestmodule git.bbappend

— conf
| L— layer.conf
— README
L recipes
L simplestmodule
L — simplestmodule git.bb

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Build the Module

* Build the new recipe (on the HOST side)

$ devtool build simplemodule

This will create the simplestmodule.ko kernel module

This downloads the kernel sources (already downloaded for you):
linux-yocto-4.12.12+gitAUTOINC+eda4d18ced4 67b62d8d7b-r0O do_fetch

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Deploy the Module

- Get the target’s IP address from the target serial console
* root@gemuarm:~# ifconfig

* Inthe eSDK (HOST) shell, deploy the output
(the target’s ip address may change)

$ devtool deploy-target -s simplestmodule root@192.168.7.2

 NOTE: the -s’ option will note any ssh keygen issues, allowing you to
(for example) remove/add this IP address to the known hosts table

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Deploy Details

* Inthe target (gemuarm), observe the result of deployment

devtool_deploy.list 100% 108 0.1KB/s 00:00
devtool_deploy.sh 100% 1017 1.0KB/s 00:00
A
ib/

Jlib/modules/

Jlib/modules/4.12.12-yocto-standard/
Jlib/modules/4.12.12-yocto-standard/extra/
Jlib/modules/4.12.12-yocto-standard/extra/hellokernel.ko
Jusr/

Jusr/include/

Jusr/include/simplestmodule/
Jusr/include/simplestmodule/Module.symvers

Jetc/

Jetc/modprobe.d/

Jetc/modules-load.d/

NOTE: Successfully deployed
/scratch/sdk/gemuarm/tmp/work/gemuarm-poky-linux-gnueabi/simplestmodule/

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Load the Module

 In the target (gemuarm), load the module and observe the results

root@gemuarm: ~# depmod -a

root@gemuarm: ~# modprobe hellokernel
[874.941880] hellokernel: loading out-of-tree module taints kernel.
[874.960165] When half way through the journey of our life

root@gemuarm: ~# lsmod

Module Size Used by
hellokernel 929 O

nfsd 271348 11

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — Unload the Module

 In the target (gemuarm), unload the module

root@gemuarm:~# modprobe -r hellokernel
[36.005902] | found that | was in a gloomy wood

root@gemuarm:~# Ismod
Module Size Used by
nfsd 271348 11

Yocto Project | The Linux Foundation

Kernel modules with eSDKs — automatic load of the
module at boot

* In the target (gemuarm), edit the file below and add a new line containing
the module name ‘hellokernel’

root@gemuarm:~# vi /etc/modules-load/hello.conf
<insert the following line and save >

hellokernel

« +Then reboot the Qemu machine and verify

root@gemuarm:~# reboot

Yocto Project | The Linux Foundation

Analytics and the Event System

David Reyna

Yocto Project | The Linux Foundation

Analytics and the Event System - Overview

 The Event System

Introduction
Thesis:

The bitbake event system, together with the event database that comes
with Toaster, can be used to generate and provide access to analytical
data and provide a new unique toolset to solve difficult problems

What we will cover today:

The problem space for extracting and analyzing data
Introduce the bitbake event system, interfaces

Event Examples: Toaster, CLI tools, customized bitbake Ul
Resources

The full presentation can be found here:

http://events.linuxfoundation.org/sites/events/files/slides/BitbakeAnalytics
ELC_Portland.pdf

What that presentation additionally covers:
Deep dive on the event system code and components

Event database, database schema, custom events, custom tools, use
cases, gotchas

The Problem Space (as | see it)

Types of addressable problems with analytics:

Issues with time or coincident sensitivity

Issues with transient data values

Issues with transient UFOs (Unidentified Failing Objects)
Issues with trends (size, time, cache misses, scaling)

If the problem is a needle, where is the haystack to look in

We need:

Easy access to deep data, time, and ordering

Reliable interaction with bitbake

Easy access to the data with tools, both provided and custom
Ability to acquire long term data, from a day to many months
Keep bitbake as pristine as possible

My builds are working, do | need this?

Excellent, you are in good shape! However, if they stop working or when
you do new work or try to scale, here are additional tools for your toolbox

The Problem Space (2)

Well known and documented data from bitbake builds:
* Logs (Build/Error logs)
» Artifacts (Kernel, Images, SDKs)
* Manifests (Image content, Licenses)
« Variables (bitbake -e)
« Dependencies

* However...

« These only capture the final results of the build, not how the build progressed nor
the intermediate or analytical information.

« ltis hard for example to correlate logs with other logs, let alone with other builds

« The Answer!
« The bitbake event system
* The bitbake event database
 Events are easy to create, fire, listen to, and catch
» There are more than 40 existing event types

* Uses IPC over python xmlrpc sockets, with automatic data marshalling

Toaster Analytics — Intermediate Data Example

« The Toaster database/GUI can for example display the intermediate
values of bitbake variables, specifically each variable’s modification
history down to the file and line.

History of BBFILES

BBFILES value is:

lopt/dreyna/toaster_master/poky/meta/recipes-*/*/*.bb /opt/dreyna/toaster_master/poky/
meta-poky/recipes-*/*/*.bb /opt/dreyna/toaster_master/poky/meta-poky/recipes-*/*/*.bba
ppend /opt/dreyna/toaster master/poky/meta-yocto-bsp/recipes-*/*/*.bb /opt/dreyna/toa
ster master/poky/meta-yocto-bsp/recipes-*/*/*.bbappend

The value was set in the following configuration files:
Order Configuration file Operation Line

/opt/dreyna/toaster_master/poky/build-2/conf/bblayers. = set?
conf

/opt/dreyna/toaster_master/poky/meta/conf/layer.conf append

/opt/dreyna/toaster_master/poky/bitbake/lib/bb/data_s set
mart.py

/opt/dreyna/toaster_master/poky/meta-poky/conf/layer. append
conf

Overview of Availlable Events

« BuildInit|BuildCompleted|BuildStarted

« ConfigParsed|RecipeParsed

« ParseCompleted|ParseProgress|ParseStarted

* MultipleProviders|NoProvider

 runQueueTaskCompleted|runQueueTaskFailed|[runQueueTaskSkipped|
runQueueTaskStarted

« TaskBase|TaskFailed|TaskFailedSilent|TaskStarted|
TaskSucceeded

« sceneQueueTaskCompleted|sceneQueueTaskFailed|sceneQueueTaskStarted

« CacheLoadCompleted|CacheLoadProgress|CachelLoadStarted

« TreeDataPreparationStarted|TreeDataPreparationCompleted

« DepTreeGenerated|SanityCheck|SanityCheckPassed

* MetadataEvent

« LogExecTTY|LogRecord

« CommandCompleted|CommandExit|{CommandFailed

« CookerExit

Event Clients (you are already an event user!)

- Bitbake actually runs in a separate context, and expects an event
client (called a “Ul") to display bitbake's status and output

 Here are the existing bitbake event clients:

« Knotty: this is the default bitbake command line user interface that
you know and love. It uses events to display the famous dynamic
task list, and to show the various progress bars

« Toaster: this is the bitbake GUI, which provides both a full event
database and a full feature web interface. We will be using this as
our primary example since it contains the most extensive
Implementation and support for events

 Depexp: this executes a bitbake command to extract dependency
data events, and then uses a GTK user interface to interact with it

* Ncurses: this provides a simple ncurses-based terminal Ul

Event Database

 The event database is built into Toaster to maintain persistent build data
* It can however just as easily be used directly with command line scripts
or other SQL compatible tools

User Web Client

{

Toaster GUI Server User Console

! !

User Console Event Database (SQL) —> Python Script

Knotty Event Client Toaster Event Client

\/

Bitbake

Example Event Database with Cl Builders

« If you enable the Toaster Ul in a Cl system, you can additionally get the
event artifacts together with your build artifacts (you will definitely need
to select a production level database)

Continuous Integration Build System

A 1
Event Database (SQL)
Lost
event
data

Knotty Event Client Toaster Event Client

~—

Bitbake

Adding Build Data to the Event Database

« There are two easy ways to get build data into the event
database

« Create and execute your builds from within the Toaster GUI

$ cd /scratch/poky

$ source oe-init-build-env

$ source toaster start webport=0.0.0.0:8000 # local only: “localhost:8000”

$ firefox localhost:8000 # here, connect browser from your using Toaster URL

« Start Toaster, and run your command line builds in that environment

$ source oe-init-build-env
$ source toaster start webport=0.0.0.0:8000
$ bitbake <whatever>

* The ‘source toaster’ performs these tasks
« Creates the event database if not present, applies any schema updates
« Starts the web client (this can be ignored for command line usage)

« Sets the command line environment to use Toaster as the Ul for bitbake
(“BITBAKE_UI")

Yocto Project | The Linux Foundation

Analytics and the Event System - Overview

Example 1. Custom command line analytic tool

Minimal Event Database Python Script

« Accessing the data in the event database is very simple. In this example we will print the data
from the first-most Build record, and also look up and print the associated Target record

$ cat /scratch/src/events/sample toaster db read.py
#!/usr/bin/env python3

import sqglite3
conn = sqglite3.connect('toaster.sqglite’')
c = conn.cursor()

c.execute ("SELECT * FROM orm build")
build=c. fetchone ()
print('Build=%s' % str(build))

c.execute ("SELECT * FROM orm_ target where build id = '%s'" % build[0])
print ('Target=%s' % str(c.fetchone()))

$

$ /scratch/src/events/sample toaster db read.py

Build=(1, 'gemux86-64', 'poky', '2.2.1', '2017-02-12 23:55:52.137355', \
'2017-02-13 00:16:30.794711', 0, '/../build 20170212 235552.805.l1log', \
'1.32.0', 1, 1478, 1478, '20170212235604"')

Target=(1, 'core-image-base', '', 1, 0, ‘/../license.manifest',6 1, \
'/../core-image-base-gemux86-64-20170212235604.rocotfs.manifest')$

Yocto Project | The Linux Foundation

Full Feature Event Database Python Script

* In this section we will work with an example python
application that extracts and analyzes event data

- Specifically, we will attempt to investigate the
guestion:

“How exactly do the tasks of a build overlap execution with other
tasks, and on a higher level how to recipes overlap execution
with other recipes, plus what data can extract around this
question”

« While this may not be a deep problem, and there are certainly OE
tools that already provide similar information (e.g. pybootchart),
the point is that (a) this was very easy and fast to write, and (b)
you can now fully customize the analysis and output to your
needs and desires.

Task and Recipe Build Analysis Script

« Hereis the list of available commands and features

*
*

$ more /scratch/src/events/event overlap.py
see db setup and schema info
$ /scratch/src/events/event overlap.py --help

Commands: ?

? : show help

b,build [build id] : show or select builds

d,data : show histogram data

t, task [task] : show task database

r,recipe |[recipe] : show recipes database

e,events [task] : show task time events

E,Events [recipe] : show recipe time events

o,overlap [task|O0|n] : show task|zero|n_max execution overlaps
O,Overlap [recipe|0|n] : show recipe|zero|n_max execution overlaps
g,graph [task] [> file] : graph task execution overlap

G,Graph [recipe] [> file] : graph recipe execution overlap

h,html [task] [> file] : HTML graph task execution overlap [to file]
H,Html [recipe] [> file] : HTML graph recipe execution overlap [to file]
q,quit : quit

Examples:

Recipe/task filters accept wild cards, like 'native-*, '*-1lib*'
Recipe/task filters get an automatic wild card at the end

Task names are in the form 'recipe:task', so 'acl*patch'

will specifically match the 'acl*:do_patch' task

Use 'o 2' for the tasks in the two highest overlap count sets
Use 'O 0' for the recipes with zero overlaps

Yocto Project | The Linux Foundation

Histogram of Parallel Task/Recipe Execution (‘d’)

Commands : Ci

Histogram:For each task,
0 1 2 3 4

0) 0 621 16 22 50
10) 57 82 87 81 47
20) 121 182 268 221 148

max number of tasks executing in parallel
5 6 7 8 9
49 56 83 94 45
56 58 62 64 88

Histogram:For each recipe's task set, max number of recipes executing in parallel

PN JdWR R R PP RO
R — I = NG I OB S O SR G SRy SN e)
P RN R NP NRE DS P2NDNDND R
PN PR NP NERENDRPRNDRND R

R RPN WRNRENR P PN

'_\
R P NN ODNDNDNDERE P WD -

PR RN dR R RN R
NN WR 0WwRE P P NP W
R R NDER 0WRR WN R P W
N 2 WK WRNDNRRPR P oYW

Yocto Project | The Linux Foundation

Histogram of Overlapping Task/Recipe Execution

Histogram:For each task, max number of tasks that overlap its build
0 1 2 3 4 5 6 7 8 9

) 614 9 10 29 28 42 46 55 51 47

0
10) 56 52 48 59 28 33 63 29 43 60
20) 60 94 119 223 105 95 53 57 36 40
30) 20 26 15 17 13 8 11 9 9 2
40) 7 10 9 7 3 6 6 3 6 6
50) 6 6 6 2 2 5 3 1 3 1
60) 4 2 5 1 2 2 1 2 3 5
. (sparse) .
980) 0 0 1

Histogram:For each recipe's task set, max number of recipes that overlap its build
0 1 2 3 4 5 6 7 8 9

0) 67 0 0 0 0 0 0 0 0
10) 0 0 0 0 0 0 0 0
.. (all zeros) ...

80) 0 0 0 0 5 1 1 8 4 1
90) 3 2 0 1 4 4 3 0 0 0
100) 0 0 0 0 0 0 2 1 0 0
110) 2 0 1 2 0 0 3 0 1 2
120) 0 0 0 0 0 0 0 0 2 0
130) 0 26 8 5 2 6 5 0 0 1
... (sparse)

170) 0 4 0 0 0 0 0 0 0 0
180) 0 0 0 0 0 0 69

Yocto Project | The Linux Foundation

Initial Results

« Here are some initial results when examining a “core-image-
minimal” project with Task Count=2658 and Recipe Count=254

« We have as many as 148 tasks being able to run with all 24 available
threads used

 There were 621 tasks that ran solo
« There were zero recipes that ran solo

« There was one task “linux-yocto:do_fetch” whose execution overlapped
with 983 other tasks; the second most overlap was “python3-
native:do_configure” with an overlap count of 798

« There were 69 recipes that overlaps with 186 other recipes, with the next
highest overlap being 4 recipes that overlap with 171 other recipes

« The below sample HTML output page on task overlaps shows the
amount of information available, with the recipe page too large to show
In this context

Initial Results

« Let us see the available builds:

Command: b
List of available builds:
BuildId=1) CompletedOn=2017-02-13 00:16:30.794711, Outcome=SUCCEEDED,
Project=Command line builds, Target=core-image-base, Task="'"
BuildId=2) CompletedOn=2017-02-13 00:46:40.724932, Outcome=FAILED,
Project=Command line builds, Target=core-image-base, Task=populate sdk ext
BuildId=3) CompletedOn=2017-02-13 00:46:26.513568, Outcome=SUCCEEDED,
Project=Command line builds, Target=core-image-base, Task="'"
BuildId=4) CompletedOn=2017-02-23 09:02:31.109727, Outcome=SUCCEEDED,
Project=Command line builds, Target=quilt-native, Task='"

« Select the minimal build #4

Command: b 4
Fetching build #4
Build: CompletedOn=2017-02-23 09:02:31.109727, Outcome=SUCCEEDED,
Project='Command line builds‘' Target='quilt-native', Task='"', Machine='gemux86-64"
Success: build #4, Task Count=9, Recipe Count=1

* Runthecommandsd,t,r,0,0,g,G to get asense of the minimal
outputs

Yocto Project | The Linux Foundation

Initial Results

 Now select the large build (#1) and explore. We shall use the
recipe filter ‘zlib’ to limit the output:

Command:
zlib
zlib
zlib
zlib
zlib

Command:
Command:
Command:
Command:
Command:

Command:

OoO0OKR +0M®OU

« Make sure your window is very wide, and then run this command
to see a graph of the task overlaps for zlib:

Command: g Z 1lib

Yocto Project | The Linux Foundation

Sample HTML Output of Task Overlap

[

R R Y (LS LS

e

B AP

LTI I,

LRIV INENE SR prea, v}

[LTI T e T]

e

[RTyIrrY

EE LT RN S

(T Y e

(==

|r:|:m:|.'d.n:_u.;a='s

[eoepatdo_parch

||npn'_:c\cbo—na:i'.'n::|a_&b\:h

[omct-mativecdo_faten

|m1_"n-mw:d|:_:';bd1

otn:de patch
frepronniae ¢

|L'.t|:r:\1a-:.u:"-x:ni.n_fr. -

[11-nativecdo_otch
|mm::|a_&b\:h

|:1:'5- protoe-nativendo mepack

noases:de_patch
| ¥

|I;':f_'.'r.'lmué- shate-native:do unpack
|:n-._|no’.:-"_zt';a:d.c_uu;aﬂ:

|I;'5otm-nn:i'-.';cdn:-_'.1:r_:-u:':
[pereciin_parcn

|I;'mt‘_-a:5-nz:i weedo_mmpack

opemsalde_patch
[spemsal:de

|Is:|-5.ﬂ:'-.‘=:da:_:'r.i

|n'9-l:mbc-n2:i':n do_patch

| Libyrtimaad-shabs-native:do_patch

|m1_'ﬁ::|:|_mpzd:

|:n-._|nu'.:-"_atw:d.v:ja1;h
|m"._'n-mw:d|:_u.u.|:ack

mtk-doc-native:do_fetch

||.u.p.ﬂ:_5c\cbo—nn':.'n::|a_1mpad

[orcen-mativacdo_patch

|I;'m~'_'a:5-nz:i'.'n::1:-_'pmd1

[Frtaoni-native:da_fatch
|gm:d:;r.=':

|k.tpr:1a-:.a]:"-x:ni.n_‘qa;':

confizara

|I;':f_'.'r.'lmué- shobs-natize:do

||n'_'|-'_imn-'nn:'-.t:d.v:_:'r.i

[Fast-complotioerdo_mpacic

mdbm-do_mepack

comEgme

|:n-._|nu'.:-"_atw:d.v:_

o_configure

|I;'m~'_'a:5-nz:i'.'n::1

|mm—m—m:d|:J:r. i

=
9
=
©
©
=
>
o
s
x
>
=
—l
o)
i
—
=
(&}
&,
Q)
S
o
o
L
o
o)
>

Analytics and the Event System - Overview

Example 2: Custom Event Interface (knice)

Custom Event Ul

« If the knotty Ul is too simple (since it does not collect data) and the
Toaster Ul too large for your analytic needs, you can make your own
bitbake Ul and have it handle specific events as you need. Here is a
simple tutorial on how to do that.

What we will do is start with the “knotty” Ul, and then customize it as
the “knice” Ul.

$ pushd ../bitbake/lib/bb/ui

$ cp knotty.py knice.py

$ sed -i —e "s/notty/nice/g" knice.py
$ vi knice.py

We make a simple change:

-print ("Nothing to do. Use 'bitbake world' to build everything, \
or run 'bitbake --help' for usage information.")

+print ("NICE: Nothing to do. Use 'bitbake world' to build everything, \
or run 'bitbake --help' for usage information.")

Now we run it:

$ popd
$ bitbake -u knice

NICE: Nothing to do. Use 'bitbake world' to build everything, or run
'bitbake --help' for usage information.

Yocto Project | The Linux Foundation

Custom Event Ul (2)

 Now let us instrument an event by updating “knice.py”.

« First, let us add "bb.event.DepTreeGenerated” to the event list

$ vi ../bitbake/lib/bb/ui/knice.py

- "bb.event.ProcessFinished"]
+ "bb.event.ProcessFinished", "bb.event.DepTreeGenerated"]

 Now let us add a print statement to the otherwise empty
"bb.event.DepTreeGenerated®“ handler code

if isinstance (event, bb.event.DepTreeGenerated) :
+ logger.info ("NICE: bb.event.DepTreeGenerated received!")
continue

 Now werun it and see our code run!

[build]$ bitbake -u knice quilt-native [| grep NICE]

NOTE: NICE: bb.event.DepTreeGenerated received! | ETA: 0:00:00

Yocto Project | The Linux Foundation

Resources

Source code and example event database

« This is available as part of the Yocto Project Developer Day Advanced
Class (see https://www.yoctoproject.org/yocto-project-dev-day-north-
america-2017, and https://wiki.yoctoproject.org/wiki/DevDay US 2017)

Here is the Toaster documentation, and Youtube video!

* http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-
manual.html#toaster-manual-start

» https://youtu.be/BIXdOYLgPxA

Basic information about bitbake Ul's
 http://elinux.org/Bitbake Cheat Sheet

Here is design information on the event model for Toaster
o https://wiki.yoctoproject.org/wiki/Event information model for Toaster

Here is the original design information on Toaster and bitbake
communication
e https://wiki.yoctoproject.org/wiki/Toaster and bitbake communications

https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://www.yoctoproject.org/yocto-project-dev-day-north-america-2017
https://wiki.yoctoproject.org/wiki/DevDay_US_2017
https://wiki.yoctoproject.org/wiki/DevDay_US_2017
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
http://www.yoctoproject.org/docs/latest/toaster-manual/toaster-manual.html#toaster-manual-start
https://youtu.be/BlXdOYLgPxA
https://youtu.be/BlXdOYLgPxA
https://youtu.be/BlXdOYLgPxA
http://elinux.org/Bitbake_Cheat_Sheet
http://elinux.org/Bitbake_Cheat_Sheet
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Event_information_model_for_Toaster
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications
https://wiki.yoctoproject.org/wiki/Toaster_and_bitbake_communications

Analytics and the Event System - Overview

Example 3: Custom event types

Custom events

 Normally, for a custom event you merely sub-class the event
class or some other existing class, and add your new content

* In this example, we show how we can easily extend
"MetadataEvent" and use it on the fly, since the sub-event 'type'
IS an arbitrary string and the data load is a simple dictionary.

e Event creation:

my event data = {
"TOOLCHAIN_QUTPUTNAME": d.getVar("TOOLCHAIN_OUTPUTNAME")
}
bb.event.fire (bb.event.MetadataEvent ("MyMetaEvent", my event data), d)

« Event handler:

if isinstance (event, bb.event.MetadataEvent) :
if event.type == "MyMetaEvent":
my toochain = event.data["TOOLCHAIN OUTPUTNAME"]

Yocto Project | The Linux Foundation

Analytics and the Event System - Overview

Example 4: Debugging coincident data in bitbake

Using Events for debugging bitbake

* You can also use the event system in debugging bitbake or your
classes.

 Example 1: The quintessential example is to use “logger.info()” to insert
print statements into the code. This is implemented as an event,
meaning that will it be passed to the correct external Ul and not lost in
some random log file.

« Example 2: The ESDK file used to be copied to the build’s “deploy/sdk”
directory as part of the task “populate_sdk_ext”. However, it is
somehow happening later, and it is hard reading the code to determine
when and where that is now occurring. We can use the event stream to
help narrow down the candidates.

» First, we add a log call into the event read loop in “bitbake/lib/bb/ui/toasterui.py”.

This will provide a log of the received events as they go by, and also reveal when
the ESDK file is created.

logger.info (“FOO: "+str (event)+","+
str(os.path.isfile('<path_to_esdk file>')))

* Ithen run abuild (in the Toaster context):

Using Events for debugging bitbake (2)

« Second, we then run a build (in the Toaster context) and collect the
events:

$ bitbake do populate sdk ext > my eventlog.txt

« Third, we examine the log to find when the file’s state changed.

NOTE: FOO:<bb.event.DepTreeGenerated object at 0x7£94ec829710>,True
NOTE: FOO:<bb.event.MetadataEvent object at 0x7f94ec829358>,False

NOTE: FOO:<LogRecord: ... "Executing buildhistory get extra sdkinfo ..."> 6 False

NOTE: FOO:<LogRecord: BitBake.Main, ... sstate-build-populate_sdk_ext ...">, False
NOTE: FOO:<bb.build.TaskSucceeded object at 0x7£94e7£5£358>,True

 We see that the existing ESDK file was removed after
“bb.event.DepTreeGenerated”, and placed after “sstate-build-
populate_sdk ext”. In other words it was moved out of the main
“‘populate_sdk_ext” task and into its sstate task. QED.

Yocto Project | The Linux Foundation

Analytics and the Event System - Overview

Example 5: Toaster

Adding Build Data to the Event Database

There are many existing analytic views in Toaster

Start the Toaster GUI in the build directory (with open ports)

$ source toaster start webport=0.0.0.0:8000

On your host, open your browser to:

devdayXXX.yoctoproject.org:8000
Click on “All Builds”, and select a build
Click on “Time”, “CPU Usage”, and “Disk 1/0”

Click on “Tasks”, and see the task order and cache usage

Existing Toaster Analytics

« The Toaster GUI already provides analytical data on builds, for example

on sstate cache success rate, task execution time, CPU usage, and Disk

/O

YOoctO - Toaster ® = Al buids

FROFECT

BUILD

Caonfiguration

Tasks

Recipes

Packages

PERFORMANCE

Time

CPU usage

Disk /O

ACTIONS

Task

do_configure
do_compile

do_fefch

do_package write_rpm
do_compile

do_compile
do_package write_rpm
do_populate_sysroot
do_configure

do compile

&= All projects

W Documentation

Recipe
nativesdk-gettext
nativesdk-perl
linux-yocto
glibc-locale
binutils-native
nativesdk-openssl
nativesdk-glibc-locale
cross-localedef-native
nativesdk-libunistring

perl

New project

Time (secs) =
902.47
796.08
738.34
720.60
701.46
£93.03
681.67
§79.22
597.47

571.11

Recipe Specific Sysroots

Joshua Lock
(given by Sean Hudson)

Yocto Project | The Linux Foundation

Recipe Specific Sysroots - Overview

Topics

 Definitions

Recipe Specific Sysroots
« Reproducible

 Repeatable: rerun a build and have it succeed (or fail) in the
same way

« Deterministic: given the same inputs the build system
should produce equivalent outputs

 Binary reproducible: given the same inputs the system
should produce bit-for-bit identical outputs

Recipe Specific Sysroots
Reproducibility and Yocto Project

* Repeatability was a founding goal of the Yocto Project

Not as common place at the time of the project’s inception

* Determinism of the YP build system has improved over
time
Vast leap forward with most recent, Pyro, release

« Being able to build binary reproducible artefacts is a
goal for future development

Some concrete tasks planned for 2.4

Recipe Specific Sysroots

Binary Reproducible

* Fully deterministic build system, producing bit-for-bit
Identical output given the same inputs

« Build environment is recorded or pre-defined

« Mechanism for users to:

Recreate the environment
Repeat the build
Verify the output matches

https://reproducible-builds.org/

https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/
https://reproducible-builds.org/

Recipe Specific Sysroots
Yocto Project Reproducibility Features

DL _DIR —shareable cache of downloads

Easily replicated build environment - configuration in
known locations, printed build header

Shared state mechanism —reusable intermediary objects
when inputs haven’t changed

SSTATE_MIRRORS -remotely addressable cache of

Uninative — static libc implementation for use with native
tools, improves sstate reuse

Fixed locale — ensures consistent date/time format, sort
order, etc

Recipe Specific Sysroots

Topics

 Determinism improvements in YP 2.3 +

Recipe Specific Sysroots

Shared sysroots — a long-standing source of non-
determinism

« Shared sysroot used by YP build system until 2.3/Pyro
release

« Cause of non-determinism, particularly with long-lived

workspaces

« automatic detection of items in the sysroot which weren't explicitly marked as a
dependency

« items which appear lower in common YP build graphs such as libc, kernel or
common native dependencies such as glib-2.0-native

Yocto Project | The Linux Foundation

Recipe Specific Sysroots
Recipe specific sysroots improve determinism

per-recipe sysroot which only includes sysroot components of
explicit dependencies

sysroot artefacts are installed into a component specific
location

built by hard-linking dependencies files in from their component
trees

reinstall sysroot content when the task checksum of the
dependency changes

resolves the issue of autodetected dependencies and implicit
dependencies through build order

Recipe Specific Sysroots

Implementations challenges

 Artefacts in the component sysroots can include hard-
coded paths — we need to be able to fix them for installed

location

 The code knows to look at certain common sites for hard-coded paths and can be
taught to fixup in more locations by appending to the EXTRA _STAGING_FIXMES
variable

* Arecipe is composed of several tasks to run in the course
of building its output; fetch, unpack, configure, etc.

« Many of these tasks have task-specific dependencies, we need to re-extend the
sysroot when tasks explicitly require items in the sysroot. i.e.
do_package write_deb need dpkg-native do_fetch for a git repo requires git-native

Recipe Specific Sysroots

Implementations challenges (ll)

« post-install scriptlets need to be executed for each recipe-

specific sysroot

« We handle this by installing postinst scriptlets into the recipe-specifc sysroot with a
postinst- prefix and running all of the scriptlets as part of the sysroot setup

« Still need to be able to replicate old shared-sysroot
behaviour in certain scenarios, i.e. eSDK

» bitbake build-sysroot recipe target takes everything in the components
directory which matches the current MACHINE and installs it into a shared
sysroot

Recipe Specific Sysroots
Adapting to recipe specific sysroots

Would have liked to be pain-free transition, but there is some
conversion required for recipe-specific sysroots.

 fix missing dependencies — commonly native dependencies, i.e.
glib-2.0-native

« SSTATEPOSTINSTFUNCS — SYSROOT_PREPROCESS_FUNCS

« SSTATEPOSTINSTFUNCS are a hook to call specific functions after a recipe is
populated from shared state, commonly used for fixing up paths.

* As shared state objects will now be installed into the recipe-component location,
then linked into the recipe specific sysroot, we need to be able to perform such fixes
in each constructed sysroot.

« SYSROOT_PREPROCESS FUNCS: is list of functions to run after sysroot
contents are staged and the right place to perform relocation in RSS world

Recipe Specific Sysroots

Adapting to recipe specific sysroots (ll)

Add PACKAGE_WRITE_DEPS for any postinsts requiring native tools at
rootfs construction

* YP build system tries to run preinst and postinsts at rootfs construction time,
deferring any which fail to first boot.

* Any special native tool dependencies of pkg_preinst and pkg_postinst must be
explicitly listed in PACKAGE_WRITE_DEPS to ensure they are available on the
build host at rootfs construction time.

Recipe Specific Sysroots

Unexpected consequences

* Recipe specific sysroots aggravated an existing source of
non-determinism

 PATH included locations in the host for boot-strapping
purposes

* Host tools were being used, where available, when native
dependencies were missing

Recipe Specific Sysroots
Resolved with PATH filtering

« All required host utilities must be explicitly listed
« These are all symlinked into a directory

« PATH is then cleared and set to this filtered location

« HOSTTOOLS: being unavailable causes an early failure (when they can't be linked
in place)

« HOSTTOOLS NONFATAL: aren't a build failure when absent, i.e. optional tools like
ccache or proxy helpers

Yocto Project | The Linux Foundation

Recipe Specific Sysroots - Overview

Topics

« Future reproducibility work

Recipe Specific Sysroots

Improved build system determinism

Next set our sights on the next level reproducible
definition: binary reproducible builds.

Common issues that affect binary reproducibility
Include:

« Compressing files with different levels of parallelism

« Dates, times, and paths embedded in built artefacts

 Timestamps of outputs changing

Recipe Specific Sysroots

Future reproducibility work

Layer fetcher/Workspace setup tool —to improve ease
of build environment replication

SOURCE_DATE_EPOCH - open spec to ensure
consistent date/time stamps in generated artefacts

strip-nondeterminism — post-processing step to
forcibly remove traces of non-determinism

etc...

Example Patches for Recipe Specific Sysroots

Juro Bystricky (34):
license.bbclass: improve reproducibility
classutils.py: deterministic sorting
e2fsprogs-doc: binary reproducible
python3: improve reproducibility
busybox.inc: improve reproducibility
image-prelink.bbclass: support binary reproducibility
kernel.bbclass: improve reproducibility
image.bbclass: support binary reproducibility
gmp: improve reproducibility
python2.7: improve reproducibility
attr: improve reproducibility
acl_2.25: improve reproducibility
zlib_1.2.11.bb: remove build host references
flex_2.6.0.bb: remove build host references

bash.inc: improve reproducibility

package manager.py: improve reproducibility ...

Yocto Project | The Linux Foundation

Open Topics

Kernel:

Is the YP-2.4 kernel already obsolete?

Kernel fragments for any kernel without explicit inherit?
Enhanced kernel audit details?

Distro and kernel feature integration?

Security

The Yocto Project has a general policy for sustaining (released)
branches. We tend to fix individual security issues (CVE) instead
of upgrade.

There is a Yocto Project security mailing list: yocto-
security@yoctoproject.org

Low volume. We are working on automatically mailing patches
that include the CVE tag to the mailing list so it is searchable, but
we have not yet done so.

Open Topics

« This is tracked by including the relevant CVE tag, pointing to the CVE
information in the patches themselves, such as:

+From 7340f67b9860ea0531c1450e5aa261c50f67165d Mon Sep 17 00:00:00 2001
+From: Paul Eggert <eggert@Penguin.CS.UCLA.EDU>

+Date: Sat, 29 Oct 2016 21:04:40 -0700

+Subject: [PATCH] When extracting, skip ".." members

+

+* NEWS: Document this.

+* src/extract.c (extract_archive): Skip members whose names contain

+

+CVE: CVE-2016-6321

+Upstream-Status: Backport

+

+Cherry picked from commit: 7340f67 When extracting, skip ".." members
+

+Signed-off-by: Sona Sarmadi <sona.sarmadi@enea.com>

 The above version includes a fix, documents it (CVE: CVE-2016-6321),
and then also documents where the fix came from (upstream commit
7340f67 of that project).

Yocto Project | The Linux Foundation

Thank you for your
participation!

OOOOOOOOOOOOOOOOO

Yocto Project | The Linux Foundation

MinnowBoard Max Turbot SD Card Prep

« Here is how to flash the microSD card for the MBM

* Insert the microSD card into your reader, and attach
that to your host

1.

2.

Find the device number for the card (e.g. “/dev/sdc”). For
example run “dmesg | tail” to find the last attached device

Unmount any existing partitions from the SD card (for
example “umount /media/<user>/boot”)

Flash the image

$ sudo dd if=tmp/deploy/images/intel-corei7-64/core-
image-base-intel-corel’7-64.hddimg of=<device id> bs=1M
On the host, right-click and eject the microSD card’s
filesystem so that the image is clean

MinnowBoard Max Turbot SD Card Prep

* Note: you can instead use the automatically generated
WIC image

1.

Flash the image

$ sudo dd if=scratch/working/build-
mbm/tmp/deploy/images/intel-corei7-64/core-image-base-
intel-corei7-64.wic of=<device 1d> bs=1M

Note that when the target boots, the WIC version of the
Image the kernel boot output does not appear on the serial
console. This means that after 14 seconds of a blank
screen you will then see the login prompt

MinnowBoard Max Turbot Board Bring-up
« Setting up the board connections

1.

2.
3.
4

Unpack the target
Insert the provided micro-SD card (pin side up)
Attach the ethernet cable from the target to the hub

Attach the FTDI 6-pin connector. The BLACK wire is on pin 1, which
has an arrow on the silk-mask and is on the center-side of the 6-pin inline
connector near the microSD connector

Connect the FTDI USB connector to your host
(Note: the USB serial connection will appear on your host as soon as the FTDI
cable is connected, regardless if the target is powered)

« Start your host’s console for the USB serial console connection

On Linux, you can use the screen command, using your host’s added
serial device (for example “/dev/ttyUSBO):
$ screen /dev/ttyUSBO 115200,cs8 (FYI: “CTRL-A Kk” to kill/quit)

On Windows, you can use an application like “Teraterm”, set the serial
connection to the latest port (e.g. “COMZ23”), and set the baud rate to
115200 (“Setup > Serial Port... > Baud Rate...”)

MinnowBoard Max Turbot Board Bring-up (2)

« Start the board
1. Connect the +5 Volt power supply to the target

2. You should see the board’s EFI boot information appear in your host’s
serial console

« Run these commands to boot the kernel

Shell> connect -r
Shell> map -r
Shell> £s0:
Shell> bootx64

* You should now see the kernel boot

« At the login prompt, enter “root”

Note: see the appendix on instructions on how we create the microSD card images

Beaglebone Black - Setup

* Create project directory, update local.conf and
bblayers.conf

$ export INSTALL DIR=pwd"

$ git clone -b rocko git://git.yoctoproject.org/poky

$ source poky/oe-init-build-env ‘pwd’/build beagle

$ echo 'MACHINE = "beaglebone"' >> conf/local.conf

$ echo 'IMAGE INSTALL append = " gdbserver openssh"' \
>> conf/local.conf

$ echo 'EXTRA IMAGEDEPENDS append = " gdb-cross-arm"' \
>> conf/local.conf

$ bitbake core-image-base

* Nothing to change inbblayers.conf, beaglebone is
supported in meta-yocto-bsp

Yocto Project | The Linux Foundation

BeagleBone Black - MicroSD

Format blank SD Card for Beaglebone Black

$ export DISK=/dev/sd[c] <<<Use dmesg to find the actual device name
$ sudo umount ${DISK}1 <<<Note the addition of the '1l'

$ sudo dd if=/dev/zero of=${DISK} bs=512 count=20

$ sudo sfdisk --in-order --Linux --unit M ${DISK} <<-_EOF
1,12,0xE, *

__EOF__

$ sudo mkfs.vfat -F 16 ${DISK}1l -n boot

$ sudo mkfs.extd4 ${DISK}2 -L rootfs

Now unplug and replug your SD Card for automount
cd tmp/deploy/images/beaglebone
sudo cp -v MLO-beaglebone /media/gquest-mX1lApE/BOOT/MLO
sudo cp -v u-boot.img /media/guest-mX1lApE/BOOT/
sudo tar xf core-image-base-beaglebone.tar.bz2 \
-C /media/guest-mX1ApE/rootfs
sync (flush to device, not neccesary, but illustrative)
umount /media/guest-mX1lApE/rootfs /media/guest-mX1ApE/boot

v v 0 O I

v 0

Yocto Project | The Linux Foundation

Dragonboard 410c - Setup

See this URL to see instructions on how to install Yocto
Project:

https://github.com/Linaro/documentation/blob/master/Refe
rence-Platform/CECommon/OE.md

To get a serial boot console, you will need to get a
specialized FTDI cable. Here are some sources:

https://www.96boards.org/products/accessories/debug/

For the slow GPIO bus (at 1.8V), it is recommended to use a
protected and/or voltage shifting shield, for example the new Grove
baseboard for the Dragonboard

Node.|s

Henry Bruce

Yocto Project | The Linux Foundation

Introduction

* Credits: Brendan Le Foll and Paul Eggleton

What we’ll be doing

* Understanding Node.|s support in Open Embedded
« Using devtool to auto-generate Node.|s recipes

« Building and deploying a package

* On-target Node.|s application development

« Using devtool to package the application

* Discuss known issues and plans for future work

Node.Js and Open Embedded

Layer index recipe search returns ~10 hits
« WEe'll be working with the meta-oe recipe
* (4., oldest LTS version)

More versions are available in meta-node|s

Devtool support was introduced in krogoth
e Use pyro

There’s still work to do. See bug #10653.

https://github.com/imyller/meta-nodejs
https://github.com/imyller/meta-nodejs
https://github.com/imyller/meta-nodejs
https://bugzilla.yoctoproject.org/showdependencytree.cgi?id=10653&hide_resolved=1

Using devtool to generate recipe

Go to the build directory (with a clean shell)

$ cd /scratch
$. poky/oe-init-build-env

Create recipe from module in registry

a)

b)

$ devtool add "npm://registry.npmjs.org;name=mraa;version=1.5.1"
$ devtool add /scratch/src/nodejs/mraa-1.5.1.tgz

Parses package.json for basis of recipe

Package name and version
Description, homepage
Location of source
Licenses

Recursively goes through dependencies
Creates shrinkwrap and lockdown files

$ devtool edit-recipe mraa

Under the hood

* NPM makes it hard to limit network access to fetch
task

* Fetch task walks dependency tree fetching tarballs
from NPM registry

- Build task uses ‘npm install’ with registry disabled
(OE specific patch) to create node_modules

 Install tasks puts node_modules in correct place

Building and deploying

* Build is really a pre-package task (apart from native
gyp builds)

S devtool build mraa

* Deploy as normal
$ devtool deploy-target -s mraa

root@target addr

* Is module installed on the target?
npm -g ls mraa

Running on target

export NODE PATH=/usr/lib/node modules

node

var mraa = require (‘mraa’)

console.log(‘mraa board: ' + mraa.getPlatformName ())
var gpio = new mraa.Gpio (360, true, true)

gpio.dir (mraa.DIR OUT)

gpio.write (1)

V V V V V #H #H

Developing on target

- Many ways of doing this. Let’s keep it simple
* On your target

mkdir mmax-blinker
cd mmax-blinker

« Write some code and test it

cp SNODE PATH/mraa/examples/javascript/Blink-IO.Js
vi B1link-I0.7js

change GPIO to “raw” id 360
add #!/usr/bin/node

node Blink-IO.Js

Create NPM module on target

* Create package.json
cp SNODE PATH/mraa/COPYING .
npm init
vi package.json

Add “bin” entry. Local dependency for mraa (or skip)

* Install
npm -g install

e Test

mmax-blinker

Create package for your application

« Copy files to build host

scp —-r rootlx.x.x.x:mmax-blinker mmax-blinker

 Check dependencies
« Local dependencies are for development only

 Now create package
$ devtool add /path/to/mmax-blinker

$ devtool edit-recipe mmax-blinker

mailto:root@x.x.x.x:mmax-blinker
mailto:root@x.x.x.x:mmax-blinker
mailto:root@x.x.x.x:mmax-blinker

Build, deploy and run application

 Build

S devtool build mmax-blinker

* Deploy
$ devtool deploy-target mmax-blinker root@x.x.x.x

1n -s /usr/lib/node modules/mmax-blinker/Blink-IO.Js
/usr/bin/mmax-blinker

chmod +x /usr/bin/mmax-blinker

° Run

mmax-blinker

mailto:root@x.x.x.x

Keep in Touch

« https://wiki.yoctoproject.org/wiki/Nodejs_Workflow |
mprovements

https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_Improvements
https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_Improvements
https://wiki.yoctoproject.org/wiki/Nodejs_Workflow_Improvements

FYI. How to add Nodejs to your project

v v v vy n

vr v W 1

cd /scratch/poky

git clone -b morty git://git.openembedded.org/meta-openembedded

git clone -b morty git://git.yoctoproject.org/meta-intel

source /scratch/poky/oe-init-build-env

echo "MACHINE = \"intel-corei7-64\"" >> conf/local.conf

echo "IMAGE INSTALL append = \" nodejs nodejs-npm curl \"" \

>> conf/local.conf

echo "BBLAYERS += \"/scratch/poky/meta-intel \"" \
>> conf/bblayers.conf

echo "BBLAYERS += \"/scratch/poky/meta-openembedded/meta-oce \"" \
>> conf/bblayers.conf

bitbake core-image-base

bitbake nodejs-native

bitbake cmake-native

bitbake parted-native dosfstools-native mtools-native

Yocto Project | The Linux Foundation

