
Creating a Custom Embedded Linux* OS for Any
Embedded Device using the Yocto Project*

Hands - on Lab

SFTL003

Tracey Erway - Product Marketing Engineer, Intel Corporation
Scott Garman - Embedded Linux Engineer, Intel Corporation
Ishu Verma - SW Technical Marketing Engineer, Intel Corporation

Agenda

Å Introduction to the Yocto Project

Å Key Concepts

Å Recipes In - Depth

Å Using Layers

Å Building an Image

Å Using the Emulator Environment

Å Rebuilding for a New Target Device

Å Tools for Application Development

The PDF for this Session presentation is available from our
Technical Session Catalog at the end of the day at:
intel.com/go/ idfsessions

URL is on top of Session Agenda Pages in Pocket Guide

2

Welcome!

Getting to know you

ÅWhat brought you to this hands - on lab?

ÅAre you currently using Linux*?

ÅHow are you building your Linux?

ÅWhat problems are you working on with
embedded Linux?

ÅWhat topics are you most interested in?

3

The Yocto Project* is an open source
collaboration project that provides

templates, tools and methods to help you
create custom Linux - based systems for

embedded products regardless of
hardware architecture.

Å Focused resources for system application
developers who need to customize a Linux
distribution for a device

Å Validated and tested BSPs in a common format

Å Automatically creates an application development
SDK customized for each specific device

Å Supported by embedded industry leaders across
multiple architectures (IA, ARM, PowerPC, MIPS,
etc)

Å Is a great starting point for ñroll your ownò
embedded developers and commercial distribution
vendors.

Å Enables easy transition from Proof of Concept
(POC) to supported Commercial Linux with no loss
of optimizations, code or design

Å Proprietary code can be included in build structure
within a separate layer, which can be kept private.
(security)

Å Project hosted by the Linux* Foundation

Industrial
& Medical

Networking &
Storage

M2M Point of Sale Simple
Electronics

4

Itôs not an embedded Linux distribution ï

It creates a custom one for you .

Point of
Sale

4

www.yoctoproject.org

Ê

Meet the Yocto Project*

4

 Participating Organizations

Silicon
Vendors

OSVs

Embedded
Tools ,
Consulting
Services,
Usersé

Contact the
Linux Foundation

If you are interested in becoming a participating organization.
(Take part in Governance, Advisory Board, Advocacy and Communications)
Project hosted by the Linux Foundation

5

http://www.dell.com/us/en/gen/df.aspx?refid=df&s=gen
http://en.wikipedia.org/wiki/File:Freescale_Semiconductor_logo.svg
http://en.wikipedia.org/wiki/File:Intel-logo.svg
http://en.wikipedia.org/wiki/File:LSI_logo_RGB_125x42.jpg
http://en.wikipedia.org/wiki/File:Mentor_logo.png
http://en.wikipedia.org/wiki/File:Logo_montavista.png
http://en.wikipedia.org/wiki/File:Texas_Instruments_Logo.svg
http://en.wikipedia.org/wiki/File:Wind_River_logo.gif
http://www.tilera.com/
http://www.panasonic.com/
http://www.netlogicmicro.com/

Intel Roadmap ï New BSPs at 1.1 Release
2Q 2012

APR MAY JUN

3Q 2012

JUL AUG SEP

2Q 2011

APR MAY JUN

3Q 2011

JUL AUG SEP

4Q 2011

OCT NOV DEC

1Q 2012

JAN FEB MAR

Software
Platform

Yocto
1.0

Hardware
Platforms

Yocto
1.0.1

Yocto
1.1

Yocto
1.2

Yocto Project* BSP for Black Sand1 1-N450 Intel® Embedded Development Board1 (Intel® AtomÊ Processor

N450)2

Yocto Project BSP for Crown Bay Platform1 (Intel® AtomÊ Processor E6xx Series)2

Yocto Project BSP for EMenlow Platform1 (Intel® AtomÊ Processor Z5xx Series)2

Yocto Project BSP for Sugar Bay Platform1 (Intel® CoreÊ i3 Processor, Intel® CoreÊ i5 Processor, Intel® CoreÊ

i7 Processor)2

Yocto Project BSP for Jasper Forest Platform1 (Intel® Xeon® Processor 5500 and 3500 Series)2

All products, computer systems, dates and figures specified are preliminary based on current
expectations, and are subject to change without notice.

6

1 Code name. 2 BSPs (Board Support Packages) are available to enable the Yocto open source project with no factory support implied or intended. * Other names and brands may be

claimed as the property of others. Commercial supported Yocto project based OS distributions come from OSVs.

Yocto Project v 1 .0 Feature
Sampling
Å Improved performance from v 0.9
Å Bitbake (build tool) parses metadata in parallel
Å Improved reliability in Bitbakeôs fetcher
Å Sandy Bridge BSP
Å Supports most recent Linaro kernel and ARM*

toolchain

Yocto Project v 1 .0 .1 Features
Å Maintenance and bugfix release v1.0

Yocto Project v 1 .1 Feature Sampling
Å Create a compelling Image Creator interface.
Å Complete multi - lib and OE -core configuration work.
Å Documentation and/or tutorials to ease BSP creation.
Å Improved Build Performance
Å Upstream features to reduce the number of patches in Yocto Project

Å Wind River has adopted parts of Yocto Project in WR Linux* 4.2 and 4.3
Å ñPlan of Visionò for the WR Linux 5 series

WHAT WHO
SUPPORTS

WHERE
DISTRIBUTED

HOW TO GET

BSPs in common
Yocto Project
format

Community YOCTO PROJECT
WEBSITE

www.yoctoproject.org

Complete platform
configuration,
environment,

Community YOCTO PROJECT
WEBSITE

www.yoctoproject.org

Embedded Media
and Graphics
Driver - EMGD
(Atom)

Yocto Project will
test specific
configurations -
provided on
website.

YOCTO PROJECT
WEBSITE or ECG
EDC WEBSITE

www.yoctoproject.org
Integrated Image
Or
www.edc.intel.com
Driver

Commercial OS
Commercial
Support

OSV OSV Thru OSV

Where to Get Things

7

http://www.yoctoproject.org/
http://www.edc.intel.com/

Intel ® Embedded Software Development
Tool Suite for Intel ® Atom Ê Processor

Intel ® C++
Compiler

Intel® AtomÊ Processor

JTAG I/F

Intel®

Integrated

Performance

Primitives

Intel ®

VTuneÊ
Amplifier XE

Intel ®

Application
Debugger

Intel ®

JTAG
Debugger

Target OS:
Linux * ; MeeGo *

Kernel debug;
On - Chip trace &
SMP run control

Identify
optimization
opportunities Thread Specific

Run Control &
Thread Grouping

Broad Processor
coverage CE 4 xxx,
Z6 xx, E6 xx, Nxx series

Performance
optimize your

code for IA

Performance
optimize your

code for IA

Linux* Operating System Support

Support

for the

Yocto

Project

A comprehensive Suite of Tools for

Embedded Development, Analysis

 and System Debugging

 http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
8

http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/

Å One common Linux* OS for all major architectures

Å Just change one line in a config file and rebuild

Å Easy transition to a commercial embedded Linux

Á Build a complete Linux system in about an hour from pre -
compiled sources (about 90 minutes with X) ï quick start

Å Start with a validated collection of packages

Å Access to a great collection of app developer tools (performance,
debug, power analysis, Eclipse*)

Å Use Kernel development tools to manage patches

Å Access to interaction with the Embedded Open Community

A Few Benefits of
The Yocto Project*

Meet Scott Garman

9

Yocto Project* Lab Prerequisites

To get the most out of this hands - on lab, you
should be familiar with the following concepts

and technologies:

ÅMakefiles

Å Autotools

Å Package formats: RPM and/or DEB

Å Root filesystem

10

At least some experience building software within a
Linux* environment is recommended

Key Concepts Agenda

ÅOverview of the Yocto Project* Build
System

ÅYocto Project* Workflow

ÅQuick Start Guide in a Slide

ÅExercise 1 : Poky Directory Tree Layout

11

Yocto Project* Build System Overview

Å Poky ï build system used by the Yocto Project*

Å BitBake ï a task executor and scheduler

ÅMetadata ï task definitions

ÅConfiguration (.conf) ï global definitions of
variables

ÅClasses (. bbclass) ï encapsulation and
inheritance of build logic, packaging, etc.

ÅRecipes (.bb) ï the logical units of
software/images to build

12

Poky = BitBake + metadata

Key Concepts

Å The Yocto Project* provides tools and metadata for
creating custom Linux* images

Å These images are created from a repository of
óbakedô recipes

Å A recipe is a set of instructions for building
packages, including:

ÅWhere to obtain the upstream sources and which
patches to apply

ÅDependencies (on libraries or other recipes)

ÅConfiguration/compilation options

ÅDefine what files go into what output packages

13

Yocto Project* Workflow

14

Quick Start Guide in a Slide

Obtain our sources:

Å Download poky -bernard -5.1.0-m 3.tar.bz 2

Å tar xjf poky -bernard -5.1.0-m 3.tar.bz 2

Å cd poky -bernard -5.1.0-m 3

Build a Linux* image:

Å source oe- init -build -env

ÅMACHINE=qemux 86 bitbake core - image -minimal

some time passes

Run the image under emulation:

Å runqemu qemux 86

15

Exercise 1 : Poky Directory Tree Layout

ÅObjective: Familiarize yourself with how the
Poky metadata sources are organized

ÅLearn where you can find conf files ,
BitBake class files , and recipe files

16

Log into your lab computer:
Password: yoctoproject

Poky Directory Tree Map

Åbitbake : the BitBake utility itself

Ådocumentation: documentation sources

Åscripts: various support scripts (e.g ,
runqemu)

Åmeta/conf: important configuration files,
bitbake.conf , reference distro config ,
machine configs for qemu architectures

Åmeta/classes: BitBake classes

Åmeta/recipes - <xyz>: recipes

17

Recipes In - Depth Agenda

ÅExample Recipe: ethtool

ÅStandard Recipe Build Steps

ÅExercise 2 : Examining Recipes

18

Example Recipe ï ethtool_ 2 .6 .36 .bb

SUMMARY = "Display or change ethernet card settings"

DESCRIPTION = "A small utility for examining and tuning the
settings of your ethernet -based network interfaces."

HOMEPAGE = "http://sourceforge.net/projects/gkernel/"

LICENSE = "GPLv 2+"

SRC_URI = "${SOURCEFORGE_MIRROR}/ gkernel / ethtool -
${PV}. tar.gz "

inherit autotools

19

Standard Recipe Build Steps

ÅBuilding recipes involves executing the
following functions, which can be overridden
when needed for customizations

Ådo_fetch

Ådo_unpack

Ådo_patch

Ådo_configure

Ådo_compile

Ådo_install

Ådo_package

20

Exercise 2 : Examining Recipes

Åmeta/recipes - extended/ bc /

ÅUses LIC_FILES_CHKSUM and SRC_URI checksums

ÅNote the DEPENDS declaration

Åmeta/recipes - core/ psplash /

ÅUses SVN for sources

ÅSets up an init service

Åmeta/recipes - multimedia/ flac /

ÅIncludes custom source patches

ÅCustomizes autoconf configure options

ÅBreaks up output into multiple binary packages

21

Layers Agenda

Å Introduction to Layers

Å Stacking Customizations

Å Adding Layers

Å Board Support Packages

Å Example machine configuration

Å Kernel configuration

 22

Layers

ÅThe Yocto Project* build system is
composed of layers

ÅA layer is a logical collection of recipes
representing the core, a Board Support
Package (BSP), or an application stack

ÅAll layers have a priority and can
override policy and config settings of
the layers beneath it

23

Stacking Customizations

24

Using Layers

ÅLayers are added to your build by editing the
build/conf/ bblayers.conf file:

BBLAYERS = " \

 /data/poky/meta \ # core system

 /data/poky/meta -yocto \ # yocto config and recipes

 /data/meta -skynet \ # my customization layer

 "

25

Board Support Packages

ÅBSPs are layers to enable support for specific
hardware platforms

ÅDefines machine configuration for the
ñboardò

ÅAdds machine -specific recipes and
customizations

ïKernel config

ïGraphics drivers (e.g , Xorg)

ïAdditional recipes to support hardware features

26

Example Machine Configuration

TARGET_ARCH = "x 86 _64 "

MACHINE_FEATURES = "kernel 26 screen keyboard pci usbhost ext 2 ext 3 x86ò

KERNEL_IMAGETYPE = " bzImage "

PREFERRED_PROVIDER_virtual /kernel = " linux -yocto "

PREFERRED_PROVIDER_linux - libc -headers ?= " linux - libc -headers -yocto "

PREFERRED_PROVIDER_virtual /libx 11 ?= "libx 11 - trim"

PREFERRED_PROVIDER_virtual / libgl ?= "mesa -dri "

PREFERRED_PROVIDER_virtual / xserver ?= "xserver -xf 86 -dri - lite"

PREFERRED_PROVIDER_virtual /xserver -xf 86 ?= "xserver -xf 86 -dri - lite"

XSERVER ?= "xserver -xf 86 -dri - lite \

 xf 86 - input -mouse \

 xf 86 - input -keyboard \

 xf 86 -video - intel"

MACHINE_EXTRA_RRECOMMENDS = "kernel -modules eee-acpi -scripts"

GUI_MACHINE_CLASS = " bigscreen "

IMAGE_ROOTFS_SIZE_ext 3 = " 2000000 "

IMAGE_FSTYPES ?= "ext 3 cpio.gz"

MACHINE_ESSENTIAL_EXTRA_RDEPENDS = "grub"

PREFERRED_VERSION_grub ?= " 1.98 "

SRCREV_machine_pn - linux -yocto_sugarbay ?= " 41 ec30 ddc 42912 fec133 a533 b924 e9c56 ecda 8f9"

SRCREV_meta_pn - linux -yocto_sugarbay ?= " 5a32 d7fe3b817868 ebb 697 d2d883 d743903685 ae" 27

TARGET_ARCH = ñx86_64ò

PREFERRED_PROVIDER_virtual/kernel = ñlinux-yoctoò

XSERVER ?= ñxserver-xf86-dri-lite \

 xf86-input-mouse \

 xf86-input-keyboard \

 xf86-video-intelò

Kernel Customization

ÅYou can define a full kernel configuration set
(defconfig) or use kernel configuration
ñfragmentsò

ÅAdd a kernel configuration fragment (. cfg) to
your layer

ïThese include standard Linux* Kconfig values and
are inserted into the generated defconfig

ÅAdd a linux - yocto.bbappend recipe to your
layer which includes your config file(s)

28

Adding E 1000 Drivers

Åmeta - talk/recipes -kernel/ linux -
yocto /netdev.cfg:

CONFIG_NETDEV_ 1000 =y

CONFIG_E 1000 E=y

Åmeta - talk/recipes -kernel/ linux -
yocto_git.bbappend :

SRC_URI_append = ñfile://netdev.cfgò

29

Images Agenda

ÅExercise 3 : Building an Image

ÅIntroduction to Images

ÅExample Image: my - nas - image.bb

ÅBooting an Image Under Emulation

ÅExercise 4 : Booting Your Image

30

Exercise 3 : Building an Image

Å cd ~/lab/poky

Å source oe - init - build - env
ÅSets up important environment variables

Å Set MACHINE=ñqemux86 ò in build/conf/local.conf

ÅSpecifies that weôre building an image for the qemux86 target

Å bitbake core - image - minimal
ÅBuilds a minimal Linux image for the qemux 86 target

31

Images

ÅSpecify which packages to install

ïList individual package names and/or:

ïSet the IMAGE_FEATURES variable, which maps
collections of packages (defined in task recipes) to
named functionality, e.g, ñapps-console -core
package -managementò

ÅDefine commands to be run on the
generated rootfs (e.g , installing configuration
files into /etc)

ÅBuilt images are saved to
build/ tmp /deploy/images/

32

Example Image ï my - nas - image.bb

IMAGE_FEATURES += " nfs -server apps -console -core package -management"

inherit poky - image

SRC_URI = "file://fstab \ # These files will be installed after the

 file://exportsò # rootfs is generated, see below

ROOTFS_POSTPROCESS_COMMAND += " setup_target_image ; "

setup_target_image () {

 # install configuration files

 install -m 0644 ${WORKDIR}/ fstab ${IMAGE_ROOTFS}/etc/ fstab

 install -m 0644 ${WORKDIR}/exports ${IMAGE_ROOTFS}/etc/exports

 # etc etc

}

33

Using Emulation

ÅYocto uses QEMU, which supports all major
architectures: x 86 (-64), arm, mips , ppc

ÅSimply set MACHINE=qemux 86 in
local.conf and build your image

Årunqemu script is used to boot the image
with QEMU ï it auto -detects as much as
possible:

runqemu qemux 86

34

Exercise 4 : Booting Your Image

cd into your build/ directory, then run:

runqemu qemux 86

Once the image has booted, log in as root
(default password is empty, just hit Return)

35

Exercise 5 : Changing Targets

ÅThe Tunnel Creek boards use the ñfri2ò MACHINE
type as defined in the meta - intel layer

Å To build a core - image -minimal image which would
boot on this board, simply edit your
build/conf/ local.conf file and set
MACHINE=ñfri2ò

Å Then rebuild: bitbake core - image - minimal

36

Embedded Software Development

Å Embedded products are highly customized to
provide special functions

ÅQuickly roll out new applications that utilize unique
hardware features

Å Embedded platforms needs

ïRun time supporting system

ïApplication development

Å Product - focused toolchain and development platform
are essential for embedded software development

37

Yocto Project* ADT

Yocto Project* Application Development Toolkit

Å Setup target system development environment on
the host machine based on sysroot concept

ïGNU cross -development toolchain of build, packaging, and
debug

ïDevelopment headers and libraries

ïSysroot represents target device root file system

ÅOptimized for use with Autotools

ïFor autotool -enabled packages just pass host options to
configure

ïFor other projects should ensure the cross tools are used

38

Yocto Project* ADT (Cont.)

Yocto Application Development Toolkit

Å Use hardware as development targets - Qemu with
GL pass - through

Å User mode NFS support
ïAllow emulator and host access the file system at same time

Å Update packages on running systems and sysroot

Å ADT installer, Eclipse plug - in and user space tool
suite

39

Allow software and hardware development to happen
in parallel

Yocto Project* 1 .1 Upcoming Features

ÅMultilib ï images which support 32 -bit and
64 -bit libraries installed at the same time
ïUse 64 -bit support for specific applications, i.e. your actual

product

Åx 32 layer ï 32 -bit memory address space
using the CPU in 64 -bit mode
ïAllows full use of 64 -bit registers in the CPU with 32 -bit

pointers

40

Yocto Project* 1 .1 Upcoming Features

ÅEnhanced layer tooling ï to make layer
creation and use easier and more robust

ÅUpdated software ï GCC v4.6, newer eglibc ,
etc.

ÅImage creator GUI ï select the desired
contents of the image, the target BSP and
go. Easier to use than the command line and
a text editor

41

Image Creator (Under Development)

42

Project Resources

Å The Yocto Project* is an open source project, and
aims to deliver an open standard for the embedded
Linux* community and industry

Å Development is done in the open through public
mailing lists: openembedded -
core@lists.openembedded.org ,
poky@yoctoproject.org and yocto@yoctoproject.org

Å And public code repositories:

Å http://git.yoctoproject.org and
http://git.openembedded.net

Å Bug reports and feature requests:
http://bugzilla.yoctoproject.org

43

Please Fill out the Online
Session Evaluation Form

Be entered to win fabulous prizes

everyday!

Winners will be announced at 6 pm (Day 1 / 2)
and 3 :30 pm (Day 3)

You will receive an email prior to
the end of this session.

44

Scan Your Badge
Connect with Intel

Å Speak with an Intel
Representative :

Have an Intel representative contact
you by phone or email with
information about Intelligent
Connected Solutions!

Å Get Free ñTech Notesò:

Receive electronic updates and
newsletters that share product and
technology highlights and keep you
posted on upcoming events,
seminars, webinars, and more!

Intel Privacy Notice : http://www.intel.com/privacy

45

http://www.intel.com/privacy

Visit the
Intelligent Connected
Solutions Zone
The intelligence in embedded.

