
Yocto Project Summit – Lyon

Day 1 : Thursday 31 October 2019

Lieu Ta, Paul Barker, David Reyna, Mark Hatle, John Mason,

Behan Webster, Mirza Krak, Mark Asselstine, Tim Orling

Presenter Slides:

https://wiki.yoctoproject.org/wiki/YP_Summit_Lyon_2019

2

Agenda – Yocto Project Summit - Day 1

9:00- 9:20 Welcome and Keynote

9:25- 10:10 Creating Friendly Layers

10:15-11:00 Yocto Project and CVEs

11:05-11:15 Morning Break

11:20-12:05 Transitioning from long term stable to CI/CD

12:10-12:55 Binary Package Feeds for Yocto

1:00-1:45 Lunch

1:50- 2:35 Yocto Project state of the Union panel talk

2:40- 3:25 Creating a Yocto/OE-core BSP layer for the Google

Coral Dev Board

3:30- 3:45 Afternoon Break

3:45- 4:30 Building Container Images with the Yocto Project

4:35- 5:20 Resulttool

1. Welcome and Keynote

Lieu Ta

2. Creating Friendly Layers

Paul Barker

5

About Me

• Involved in Yocto Project since 2013

• Work across the whole embedded stack

• Managing Director & Principal Engineer

@ Beta Five Ltd

• Contact: paul@betafive.co.uk

• Website: https://www.betafive.co.uk/

mailto:paul@betafive.co.uk
https://www.betafive.co.uk/

6

About This Talk

• Introduction

• Best Practices

• Layers to learn from

• Methods

• Examples

• Parsing details of bblayers.conf and layer.conf files

• Suggestions for future work

7

There Shall Be No Victims

• I won’t be showing examples of bad practice today

• Sorry to disappoint!

8

What Is A Friendly Layer?

• Simply adding the layer doesn’t change functionality

• Doesn’t assume MACHINE, DISTRO, etc

• Careful use of bbappends

• Avoid clashing with recipe names in existing layers

• Place python helpers in a lib directory

• Avoid littering the global namespace

• Well documented

9

Why Should You Care?

• Yocto Project Compatible badge requires this

• Makes it easier to integrate with other layers

• Less likely to cause conflicts

• Easier to test and debug builds

• Can quickly turn features on and off

• Can reduce the number of layers you need to create

• Check MACHINE instead of having one layer per machine

• Check features instead of having one layer per feature

• Actually simplifies development of your layer

10

But can’t you just dynamically set BBLAYERS?

• Not in a multiconfig

• Not based on variables in local.conf or some layer

• So you may not even know MACHINE, DISTRO, etc

• Not even very easily in bblayers.conf

• Parsing limitations discussed later

• Dynamically creating bblayers.conf for each build

means another script to maintain

11

Layers To Learn From

• meta-virtualization

• meta-clang

• meta-security

• meta-raspberrypi

12

Documenting Your Layer

• You need a README

• Also add a ‘docs’ folder at the top level

• Sphinx (http://www.sphinx-doc.org) is a good choice

• Can publish to Read the Docs (https://readthedocs.org)

• Also clearly identify

• Licensing

• How to contribute

• Support forums or email addresses

http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
http://www.sphinx-doc.org/
https://readthedocs.org/

13

Keep layer.conf simple

• Settings in layer.conf apply to all recipes

• Not just those in your layer

• Often difficult to override things set in layer.conf

• Parsed very early

• Details covered later

• Parsed in BBLAYERS order not BBFILE_PRIORITY order

14

Adding New Content in Layers

• New content is typically safe to add

• New recipes

• New classes

• New machines

• New distros

• Watch out for name clashes

• Search the layer index first: https://layers.openembeded.org/

https://layers.openembeded.org/

15

Modifying Existing Recipes

• This is where you can cause problems

• Don’t indiscriminately modify variables and tasks

• Use overrides and conditionals

• Check MACHINE, DISTRO, feature variables, etc

16

_remove: Use with caution

• _remove takes precedence over _append

• _remove cannot be undone easily!

• Avoid it if at all possible

17

Using Overrides

• Extend OVERRIDES based on a variable

• Use override syntax in variable assignments

• Document your new variable

• For example, if you support option `a` and option `b`:

 OVERRIDES =. "option-${OPTION}“

 SRC_URI_append_option-a = "file://a.patch"

 SRC_URI_append_option-b = "file://b.patch file://b.conf"

18

Example: Toolchain Override in meta-clang

• In clang.bbclass:

choose between 'gcc' 'clang' an empty '' can be used as well

TOOLCHAIN ??= "gcc"

OVERRIDES =. "${@['', 'toolchain-${TOOLCHAIN}:']['${TOOLCHAIN}' != '']}"

CC_toolchain-clang = "..."

CXX_toolchain-clang = "..."

CPP_toolchain-clang = "..."

CCLD_toolchain-clang = "..."

CLANG_TIDY_EXE_toolchain-clang = "..."

RANLIB_toolchain-clang = "..."

AR_toolchain-clang = "..."

NM_toolchain-clang = "..."

19

Using Features

• Three classes of feature variables:

• DISTRO_FEATURES

• MACHINE_FEATURES

• IMAGE_FEATURES

• Much tidier than messing with overrides

• Conditional syntax isn’t very pretty though

20

Conditional Syntax

• Python expressions

• Can call a function `fn` with the syntax `${@fn()}`

• Two commonly used condition functions

• oe.utils.conditional
 def conditional(variable, checkvalue, truevalue, falsevalue, d):

 if d.getVar(variable) == checkvalue:

 return truevalue

 else:

 return falsevalue

• bb.utils.contains – is `checkvalues` a subset of `variable`?
 def contains(variable, checkvalues, truevalue, falsevalue, d)

21

Conditional Inclusion

• You can use Python expressions in include and

require statements

• Example:

 require ${@bb.utils.contains('DISTRO_FEATURES', ...)}

• You can have a simple .inc file without conditionals if

you have many changes to make based on one

condition

22

Include vs Require Statements

• `require` errors on missing files

• You almost always want this

• `include` silently ignores missing files

• Useful for optional configs

• Useful when including something from another optional layer

23

Example: Distro Features in meta-virtualization

• README

The bbappend files for some recipes (e.g. linux-yocto) in this layer need to

have 'virtualization' in DISTRO_FEATURES to have effect. To enable them, add

in configuration file the following line.

 DISTRO_FEATURES_append = " virtualization“

• linux-yocto_4.19.bbappend

require ${@bb.utils.contains('DISTRO_FEATURES', 'virtualization’,

 '${BPN}_virtualization.inc', '', d)}

• No DISTO_FEATURES conditionals needed in the .inc
file

24

Example: Conditional inheritance in meta-security

• linux-%.bbappend

inherit ${@bb.utils.contains('DISTRO_FEATURES', 'modsign’,

 'kernel-modsign', '', d)}

• No DISTRO_FEATURES conditionals needed in

kernel-modsign.bbclass

25

Adding Sanity Checks

• Add a handler for bb.event.SanityCheck

• Ensures your check only runs once

• Raise a flag if things look wrong

• bb.warn()

• bb.error()

• bb.fatal() if you really can’t continue

• Use this if you really must limit supported values of

MACHINE, DISTRO, etc

26

Example: Sanity Checks in meta-virtualization

• sanity-meta-virt.bbclass

addhandler virt_bbappend_distrocheck

virt_bbappend_distrocheck[eventmask] = "bb.event.SanityCheck"

python virt_bbappend_distrocheck() {

 skip_check = e.data.getVar('SKIP_META_VIRT_SANITY_CHECK') == "1"

 if 'virtualization' not in e.data.getVar('DISTRO_FEATURES').split()

 and not skip_check:

 bb.warn("...")

}

27

Using Anonymous Python Functions

• Useful when more complex conditionals are needed

• Full support for python if statements, for statements, etc

• Executed at parse time

• Can use d.getVar() to check variables

• Can use d.setVar() to modify variables

• Syntax:

 python() {

 if d.getVar('SOMEVAR').startswith('prefix'):

 d.setVar('SOMEOTHERVAR', '1')

 }

28

Using Classes to Modify Recipes

• Define a new class in your layer

• Do not set INHERIT in layer.conf or elsewhere

• Document that your functionality is enabled by adding

the new class to INHERIT in local.conf or a distro conf

• Useful if you have similar modifications to make to

many recipes

29

Modifying BBCLASSEXTEND

• Appending to BBCLASSEXTEND in a bbappend is

relatively safe

• No need for conditionals here

• May be used to add `-native` variant of an existing

recipe

• Can then be used in the build of another recipe

30

yocto-check-layer Script

• Layer compatibility test script

• Checks recipe signatures with and without the layer

present

• Also checks for other common requirements:

• Does the layer have a README?

• Does everything parse correctly?

• Is LAYERSERIES_COMPAT set?

• Can we get signatures for `bitbake world`

• Actual build is not perfomed

31

In Summary: Think About Downstream Developers

• How can they extend configuration?

• How can they disable things?

• Don’t force them to use _remove

• Don’t assume distro, machine or target image

• If support really is limited, add a sanity check

32

Parsing Details: bblayers.conf

• Parsed first

• Before any layer.conf

• Before local.conf or other user config files

• Before base.bbclass

• BBLAYERS is iterated as soon as bblayers.conf is

fully parsed

• Can’t depend on variables from any of the above files

• No access to python lib directories from any layer

• Can’t `import oe` or any submodules

• Can’t use oe.utils.conditional(), use bb.utils.contains()

instead

33

Parsing Details: layer.conf

• Parsed in sequence of BBLAYERS immediately after

bblayers.conf

• Still before local.conf, base.bbclass, etc

• Still no access to python lib directories from any layer

• Including the current layer!

34

Future Work

• Make it easier to write friendly layers

• Automate checks against the layer index

• Catch recipe, machine or class name duplication

• Nerf layer.conf

• Simpler conditionals?

• Encourage more layer documentation

• Should we standardise here?

35

Thank You

Any questions?

Follow Up: paul@betafive.co.uk

mailto:paul@betafive.co.uk

3. Yocto Project and CVEs

David Reyna

37

Overview: Security and Yocto Project

• What this presentation is about

• Resources

• General background about CVEs

• Process around CVE patching

• Tools for finding and managing CVEs

• Work in progress

• What this presentation is not about

• Fixing CVEs

• Runtime Security checks (e.g. openSCAP)

• Hacking yoctoproject.org

38

Overview: Yocto Project Security Management

• Since the Yocto Project is intended to be flexible and meet the

needs of many applications, we leave policy-making decisions

around security to our end users.

• Our goal instead is to ship each release with metadata that follows best

practices in that we do not release recipe versions which are known to have

significant security vulnerabilities.

• Generally this is done by upgrading recipes to newer versions that are no

longer vulnerable to these issues.

• We also solicited and receive direct patches from our community

• The Yocto Project community is doing a lot of work around CVEs,

but that work is not always visible to our members, in terms of

tooling, communication, and management

• We are looking at ways to better engage the community in tracking,

communicating, and fixing CVEs

39

Resources

40

Resources:

• The Yocto Project Security homepage can be found here:

• https://wiki.yoctoproject.org/wiki/Security

• Public security mailing list (there is also a private one)

• yocto [dash] security [at] yoctoproject[dot] org

• People

• Ross Burton (general security)

• Mark Hatle (general security)

• Pierre Le Magourou (cve-check)

• David Reyna (Security Response Tool)

• Papers from Yocto Project Members

• https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-

Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf

• https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-

management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys

https://wiki.yoctoproject.org/wiki/Security
https://wiki.yoctoproject.org/wiki/Security
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://events.linuxfoundation.org/wp-content/uploads/2017/12/Keeping-Up-With-The-Joneses-CVEs-David-Reyna-Wind-River-Systems.pdf
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys
https://ossna19.sched.com/event/PTaX/open-source-cve-monitoring-and-management-cutting-through-the-vulnerability-storm-akshay-bhat-timesys

41

Security and Yocto Project: Paper by NCC

• The was a paper published in 2018 by NCC Group that covered a lot of

security topics related to Yocto Project

• http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-

embedded-linux-security-yocto3.pdf

• We have recently reviewed that paper, and it seems quite reasonable.

• It's correct in that meta-security-isafw is abandoned: that was part of the Intel RefKit

effort and that was disbanded some time ago.

• The paper needs updating in a few places but seems a good overview of the entire

field.

• The cve-check paragraph in this paper is still applicable today as the

maintainers did not modify the Yocto user behaviour, except for 2 things:

• CVE_CHECK_CVE_WHITELIST is deprecated and has been simplified to

CVE_CHECK_WHITELIST, in which you only set the CVE numbers that need to be

whitelisted.

• CVSSv3 score has been added in the CVE report.

http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf
http://www.nccgroup.trust/globalassets/our-research/us/whitepapers/2018/improving-embedded-linux-security-yocto3.pdf

42

Some security related links/useful tools:

• CVE details:

• https://www.cvedetails.com/

• CVE list, Linux kernel 2019

• https://www.cvedetails.com/vulnerability-list/vendor_id-

33/product_id-47/year-2019/Linux-Linux-Kernel.html

• Meta-security-layer

• http://layers.openembedded.org/layerindex/branch/master/la

yer/meta-security/

• Making images more secure

• https://www.yoctoproject.org/docs/current/dev-manual/dev-

manual.html#making-images-more-secure

• Cvechecker

• https://github.com/sjvermeu/cvechecker/wiki

43

General background

on CVEs

44

Background: CVEs

• CVE (Common Vulnerability Enumerations)

• The enumerations of the community tracked security vulnerabilities, separated

by the year reported (e.g. CVE-2018-12345)

• Vendors/Sources

• MITRE: Manages the list of CVEs

• NIST (National Institute of Standards and Technology): manages

the National Vulnerability Database (NVD) of CVEs

• Hardware Vendors, Software Maintainers, Distros

• Many vendors track and share CVE's relevant to their product

• Many CVE aggregators also available (e.g. cvedetails.com)

• Mailing lists, websites, and forums (public and private)

• Preview of coming issues, place to discuss issues

45

Background: CVEs

• Volume of CVEs is 1000+ per month and growing

46

Quality of CVEs: Issues

• CVEs may only have a brief or incomplete description

• The affected Common Product Enumeration (CPEs)

lists in CVE may have gaps, errors, unexpected

version deviations, and may even be empty

• CVE content may be misleading, mentioning one

package when it actually affects a different package

• CVEs may have few, inaccurate, or missing content

links (discussion, reproducers, patches)

• CVE status changes continually as new information is

discovered and shared

• Sometimes delays in content updates (dark CVEs)

47

Quality of CVEs: Issues (2)

• The most recently created CVEs (within the last few

months) are particularly prone to the above issues, but

unfortunately these are often all that organizations have to

work with for their pending releases (i.e. there is often no

CPE data to work with)

• Tools (e.g. CVE scanners) generally rely completely on

these CPE lists, which is why the above issues are

important. Ideally, they insure that (a) they are flexible in

processing the information, (b) that they can differentiate

between strong and weak data, (c) that expectations are

set as to what the tool is able conclude and act upon, and

that (d) humans are appropriately included in the process.

48

Quality of CVEs: Examples 1

• CVE-2017-13220:

• The CPE says “cpe:2.3:o:google:android:-

:*:*:*:*:*:*:*” then talks about upstream kernel

issues and refers to a kernel SHA.

• CVE-2014-2524:

• Has a CPE which claims all releases of

“readline” 6.3 and below are vulnerable, but the

problem only exists in 6.0 onwards.

49

Quality of CVEs: Examples 2

• CVE-2017-8872:

• Against “libxml” resulted in a bug and patch, but

upstream ignored it. An almost-identical patch

was merged recently but no mention of the

CVE was made

• CVE-2018-10195:

• A case study in 'dark CVEs'. Reserved in

MITRE, Red Hat have their own notice and a

patch. Since it is for software which is long-

dead, this patch will never go upstream.

50

Quality of CVEs: Some Good News

• Pierre has actually worked directly with NVD in fixed

some CVEs. It is a small team, but he has found that

they have been very responsive and timely for his

requested fixes

• Here is the mail address of the nvd team:

 nvd@nist.gov

• They would be happy to update their database (as

time and resources allow) if you find a problem in it.

They ask you to provide publicly available information

though, to be able to verify your claims.

51

CVE Tools 1: CVE System Analysis

• Can be very valuable in targeting product specific

review activities

• Tells you of known vulnerabilities, but not what you

are NOT vulnerable to

• Scans almost exclusively in the category of 'needs

investigation‘

• Depends on known data (CPEs)

• Can be very expensive

• Example: Nessus

52

CVE Tools 2: CVE Build/Source Analysis

• Can be more precise than system analysis

• Possible for something to trigger a vulnerable
warning for components never used

• You still need to determine what you are not
vulnerable to, understand the items that were
reported, etc.

• Depends on known data (CPEs)

• Examples: Black Duck, Yocto Project ‘cve-
report’, Dependency Tracker

53

CVE Tools 3: Catch CVEs Early and Often

• Actively scan the incoming and updated CVE
records, and compare against your product(s)
source

• Proactively prevent vulnerability injection, use
expertise to interpret CVE content, merge with
other vulnerability resources (e.g. private lists)

• Depends on engineering time and
expertise

• Examples: Security Response Tool (SRTool)

54

Process

55

The Security Homepage process statement

• Since the Yocto Project is intended to be flexible and

meet the needs of many applications, we leave policy-

making decisions around security to our end users.

• Our goal instead is to ship each release with metadata

that follows best practices in that we do not release

recipe versions which are known to have significant

security vulnerabilities.

• Generally this is done by upgrading recipes to newer

versions that are no longer vulnerable to these

issues.

56

The Security Homepage process statement

• Upgrading recipes to the newer versions in the

maintenance branches is not always easy, this is why

we provide a patch for the existing version instead if

we detect a vulnerability in a package. The patches

are added to the recipes, see example below:

poky/recipes-connectivity/bind/bind_9.9.5.bb

SRC_URI = "ftp://ftp.isc.org/isc/bind9/${PV}/${BPN}-${PV}.tar.gz \

 file://conf.patch \

 ...

 file://bind9_9_5-CVE-2014-8500.patch \

ftp://ftp.isc.org/isc/bind9/${PV}/${BPN}-${PV}.tar.gz
ftp://ftp.isc.org/isc/bind9/${PV}/${BPN}-${PV}.tar.gz
ftp://ftp.isc.org/isc/bind9/${PV}/${BPN}-${PV}.tar.gz
ftp://ftp.isc.org/isc/bind9/${PV}/${BPN}-${PV}.tar.gz
ftp://ftp.isc.org/isc/bind9/${PV}/${BPN}-${PV}.tar.gz

57

Yocto Security Team

• The purpose of creating a security team in the Yocto

project is to discuss, sync and organize security

related activities.

• The team's main responsibilities among others are:

• Scanning of security forums/mailing list(s) to detect security

vulnerabilities reported by community

• Responsible for fixing CVEs in the Yocto releases &

maintained branches

• Evaluation of tools for security tests

• Responsible for security related info in the Yocto

documentations

• Hardening of Yocto release

58

Branches maintained with security fixes

• See the “Stable branches maintenance” link for

detailed info regarding the policies and maintenance of

Stable branch.

• https://wiki.yoctoproject.org/wiki/Stable_branch_maintenance

• Policy: all CVE (security) patches should be back-

ported if at all possible. If a CVE fix is only appropriate

to a stable branch the patch submission should detail

why this is the case.

• The older versions in grey are no longer actively

maintained with security patches, but well-tested

patches may still be accepted for them

59

Policy for updating package versions for the stable
branches

• The Yocto project purposely limits updating of

packages on oe-stable releases to items that address

security problems (e.g. CVEs).

• For packages like QEMU we avoid updating between

from one "dot.dot" to another related "dot.dot"

version since it has been seen in the past that even

with "simple" updates, things can go wrong and a lot

more testing is required to verify compatibility.

• Better to only add CVE patches to fix specific point

problems.

60

A practical discussion between Mark and Ross

• Patch contribute is not yet a fully formal process.
Contributors send a patch as per usual. If it fixes a
CVE we hope that they backport it to the stable
branches too.

• Specifically patches have to go to master first, and
then be backported. If it's not applicable to master,
then they can go directly to the affected layer.

• Many CVE fixes for stable branches come from OSVs
who are sharing the fixes they've integrated (WR,
Mentor, MV, etc) but it's a fact that these OSVs are not
contributing all of the fixes they have for various
reasons.

61

A practical discussion between Mark and Ross - 2

• This lack should be changing soon: the Yocto Project Technical
Steering Committee is looking at "the security question" and
plans to get something formalized in the future, probably
involving SRTool and a team of people across companies.

• The Yocto Project will do 'minor' upgrades for security fixes, but
only if they are sure that the API/ABI is consistent before and
after the -minor- upgrade. There have been numerous instances,
such as boost, where this is not true. In those cases, individual
fixes are applied.

• I think this 'hope' is the biggest issue that a 'more' formal
process needs to resolve. If you don't know it's an applicable
CVE process then they don't know it needs to be backported.
That's where things need to start. Knowing if a particular version
is likely affected by a problem, and being able to backport the fix
if a newer version is not affected. (Knowing WHY it's not
affected will significantly help with this effort.)

62

In Practice: If you want to know if your project is
vulnerable

• Check Bugzilla if there is a defect with the CVE

number

• Check the commit logs if there is a patch with the CVE

number

• Run tools like cve-check to check your build manifest

• Soon: use SRTool to have the above data already

correlated

• Watch for the regular CVE patch emails from the

Security Team (automated dispatcher)

63

In Practice: If you find a security vulnerability

• If you find a security flaw; a crash, an information

leakage, or anything that can have a security impact if

exploited in any Open Source packages used by the

Yocto Project, please report this to the Yocto Security

Team.

• If you prefer to contact the upstream project directly,

please send a copy to the security team at Yocto as

well.

• If you believe this is sensitive information, please

report the vulnerability in a secure way, i.e. encrypt

the email and send it to the private list.

64

Meta-Security Layer

65

Meta-Security

• The meta-security layer “provides security tools,

hardening tools for Linux kernels”

• http://git.yoctoproject.org/cgit/cgit.cgi/meta-

security/tree/README

• Notes from the layer maintainer (Armin)

• All packages in this layer get their build and runtime tests

executed on a regular basis

• Popular packages include apparmor, smack, clamav,

openSCAP, and even the older bastille

• See the NCC paper for more reviews and explanation

of the meta-security layer content

https://layers.openembedded.org/layerindex/recipe/60225/
https://layers.openembedded.org/layerindex/recipe/57465/
https://layers.openembedded.org/layerindex/recipe/32867/
https://layers.openembedded.org/layerindex/recipe/5340/

66

Security Build Flags

67

Security build flags

• There is a class that defines the that your build can

use to inject static and runtime checks:

• https://git.openembedded.org/openembedded-

core/tree/meta/conf/distro/include/security_flags.inc

…

Inject pie flags into compiler flags if not configured with gcc itself

especially useful with external toolchains

SECURITY_PIE_CFLAGS ?= "${@'' if '${GCCPIE}' else '-pie -fPIE'}"

SECURITY_NOPIE_CFLAGS ?= "-no-pie -fno-PIE"

SECURITY_STACK_PROTECTOR ?= "-fstack-protector-strong"

SECURITY_CFLAGS ?= "${SECURITY_STACK_PROTECTOR} ${SECURITY_PIE_CFLAGS} …

SECURITY_NO_PIE_CFLAGS ?= "${SECURITY_STACK_PROTECTOR} ${lcl_maybe_fortify} …

SECURITY_LDFLAGS ?= "${SECURITY_STACK_PROTECTOR} -Wl,-z,relro,-z,now"

SECURITY_X_LDFLAGS ?= "${SECURITY_STACK_PROTECTOR} -Wl,-z,relro"

powerpc does not get on with pie for reasons not looked into as yet

GCCPIE_powerpc = ""

GLIBCPIE_powerpc = "“

…

68

Tools

69

CVE-CHECK

• A recipe called cve-update-db populates a sqlite database from NVD

json feeds. The cve-check class reads the database for each recipe

to check for CVEs. To use it, you just have to add this to your

“local.conf”:

• In the Yocto source code for CVE patches, it generates a text report

that says if the CVE is patched or unpatched in the image we built.

• You can whitelist some CVEs in a recipe with the

CVE_CHECK_WHITELIST variable

• Pierre reports that cve-check is working well and that he uses it

every day.

 inherit += "cve-check"

70

CVE-CHECK

• Here is some example results:

• Snippet from CVE log:

•

(examples from NCC presentation)

NOTE: CVSS V3 data added recently

71

CVE-CHECK

• Suppressing a false-positive CVE (list):

• By the way, there is a self test recipe for cve-check in the “meta-

security” layer

(examples from NCC presentation)

72

Cve-check

• cve-check-tool replaced by cve-update-db (JSON feeds)

• • Master (and now Zeus) branch only!

• https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-

update-db-native.bb

• https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/classes/cve-

check.bbclass

• CVE result improvements

• cve-check-tool (string compare) vs. cve-update-db (>=, <= etc.)

Recipe Rev Previously missed

wpa-supplicant 2.6 3

python 3.5 5

sumo 2.30 5

(data from Timesys presentation)

https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/recipes-core/meta/cve-update-db-native.bb
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/classes/cve-check.bbclass
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/classes/cve-check.bbclass
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/classes/cve-check.bbclass
https://git.yoctoproject.org/cgit/cgit.cgi/poky/log/meta/classes/cve-check.bbclass

73

Yocto Project CPE to Recipe Mapping

• CVE_PRODUCT: recipe name to NVD name mapping

• curl_7.65.3.bb: CVE_PRODUCT = "curl libcurl“

• openssl_1.1.1c.bb: CVE_PRODUCT = "openssl:openssl“

• python-urllib3.inc: CVE_PRODUCT = "urllib3"

• CVE_VERSION: recipe version to NVD version mapping

• krb5_1.17.bb: CVE_VERSION = "5-${PV}"

• Tracks patched CVEs

• CVE ID in patch header (preferred)

• CVE ID in file name

(examples from Timesys presentation)

74

Security Response Tool (SRTool)

• While there is heighten awareness about device vulnerabilities,

what is often missing is awareness about the process of

managing the security response process itself

• Wind River is sharing to open source a tool to help manager the

organization’s security response management:

• Better ways to handle 1000+ CVEs per month

• Better ways to connect CVE’s to defects to product

• Better ways to allow easy access to the full vulnerability status,

generate reports, clean exports to public CVE DB

• Better ways to use automation to keep all the data sources

automatically up to date

• Community Page:
• https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool

• ELCE Presentation:

• https://sched.co/HOLr

https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool
https://wiki.yoctoproject.org/wiki/Contribute_to_SRTool
https://sched.co/HOLr
https://sched.co/HOLr
https://sched.co/HOLr

75

Work in progress

76

Yocto Project CPE to Recipe Mapping

• Always working to better map CVEs and CPEs to Yocto Project

Recipes

• Make it easier for people find the project’s Security information

• Publish documentation on these tools, especially the cve-check

• Leverage the SRTool database and its automated update features to

help drive the CVE input for tools like the cve-check

• Extend the SRTool to merge data from tools like cve-check into its

database, and also add GUI tools and reports around those tools

• Extend the SRTool to automatically scan the YP/OE repositories for

patches that are tags as CVE fixes, and allow correlation with the

CVE and cve-check data

4. Transitioning from long term stable to

CI/CD

Mark Hatle

78

Terms
• Long Term Stable – a release that has some defined period of

maintenance, and a defined bug fix strategy

• Continuous Integration – Act of integrating upstream source

code and local changes on a continuous basis.

• Continuous Development – Developing against the latest

Continuous Integration OS

• Continuous Delivery – Delivery production code to customers on

a continuous basis

• DevOps – Encompasses Continuous Integration, Continuous

Development, Continuous Delivery and necessary organizational

changes to support this model.

• Technical Debt – The work that you need to maintain, as it is not

in the community

Yocto Project | The Linux Foundation

Stable Release Strategy

Traditional Approach – Long Term Stable

a.k.a. Periodic Uplift

80

Long Term Stable
Traditional OSS device development model

• Why?

• This is what people have been doing for years

• People are used to managing the risks, challenges, and maintenance

• Well supported by community and commercial interests

• Starts by choosing a “stable” version of the Open Source

software with a plan to remain there for a period of time (part or

all of expected product life cycle)

• Your development then is on top of the stable, and expects

minimal changes to the stable base over time.

81

Yocto Project Stable

(12 Months)

Long Term Stable

Yocto Project Dev

(6 Months)

Product Developments

Product Maintenance

82

Yocto Project Stable

(12 Months)

Long Term Stable

Yocto Project Dev
(6 Months)

Product Developments

Product Maintenance

By the time development starts, you are 1-7+ months out of date

with for software features, but APIs are established.

By the time you deploy, you are on your own

for support… (Can be mitigated w/ OSV support)

83

Long Term Stable

• Advantages:

• Lowers perceived risks*

• You know exactly what you will get now and into the future

• Minimal to no API changes over life of product

• Disadvantages:

• *May actually increase long term support risks (Bugs, CVEs, etc)

• Use commercial OSVs to mitigate this risk

• Can’t rely on Open Source communities to help with maintenance

• Software may be obsolete by the time you use it

• Functional capabilities are locked down

• No or minimal new features

Yocto Project | The Linux Foundation

Continuous Integration & Development

Advanced Approach – CI with Long Term Stable

85

Continuous Integration/Development

• Regular integration/rebase of open source components

• Why?

• Better understanding of new features

• Ability to influence community direction (and features)

• Time to market

• Ability to transition to “stable” model

• Starts by using the in-development version of the Yocto Project,

then follows the stable branch when available.

• Your development is based on in development work, and expects

minimal changes to the stable base over time.

86

Yocto Project Stable

(12 Months)

Long Term Stable

Yocto Project Dev

(6 Months)

Product Developments

Product Maintenance

87

Yocto Project Dev

(6 Months)

Yocto Project Stable

(12 Months)

Long Term Stable

Product Developments

Product Maintenance

Staying current with development means you are up-to-date,

but you need to keep rebasing to stay current… churn can cause rework

By the time you deploy, you know the quality level of the

components and you can piggy back on the Yocto Project

stable support path longer. Can benefit from OSV support.

88

Moving from LTS to CI
Define quality objectives (OS)

• How do you measure what the quality level is?

• Automation is key!

• Testing (OS)

• Frameworks(s)

• Community Tests

• Your Own Tests

• What is acceptable quality?

• Don’t have to test everything, but you need to test your use cases.

89

Moving from LTS to CI
Define synchronization strategy (OS)

• Merge or rebase?

• Merge hides technical debt

• Rebase brings technical debt ‘to the top’, at the expense of non-FF

• How often to resync?

• Daily – every 2 weeks

• What happens when there is a conflict?

• Who fixes the problem?

• Identify “changes”, and communication to users is key

• If/when to push upstream (lower technical debt)

90

Moving from LTS to CI
Integration Strategy (Product)

• Decide when to integrate into product development

• Quality Criteria?

• Time?

• How to integrate development work

• Rebase? Merge? “next” development? Etc…

• How to deal with periods of transition?

• What happens when API/ABI changes?

• Testing

• How to catch when something unexpected changed, but didn’t trigger

build-time error

• May need more diligent functional testing, then otherwise necessary

91

Rebase Work

2.6

M1

2.6

M2 2.6

M3

2.6

Bugs 2.6

GA

2.5

GA 2.6

M1

2.6

M2 2.6

M3

2.6

Bugs 2.6

GA

2.5

GA

Based on http://github.com/WindRiver-OpenSourceLabs – bitbake, oe-core, meta-yocto, meta-openembedded

http://github.com/WindRiver-OpenSourceLabs
http://github.com/WindRiver-OpenSourceLabs
http://github.com/WindRiver-OpenSourceLabs

92

Continuous Integration & Development

• Advantages:

• Ability to influence quality and features of OSS components

• Faster time to market/More up-to-date features

• Longer Open Source support window

• *Lowers perceived maintenance risks, once on stable

• Stable API/components after release

• Disadvantages:

• Need to coordinate development and release schedule with YP release

• Requires additional testing for risk management

• *Once on stable, same long term support risks (Bugs, CVEs, etc)

• Use commercial OSVs to mitigate this risk

• Can’t rely on Open Source communities to help with maintenance, long term

• Functional capabilities are locked down

• No or minimal new features

Yocto Project | The Linux Foundation

Continuous Integration & Continuous Delivery

DevOps Approach

94

Continuous Integration & Continuous Delivery

• Regular integration/rebase of open source components

• Why?

• Better understanding of new features

• Ability to influence community direction (and features)

• Time to market

• Continuous ability to incorporate new features

• Easier to resolve defects

• Keeps technical debt under control

• Using the in-development version of the Yocto Project

• Your development is based on in development work, expect to

adjust over time to new features

95

Continuous Integration & Continuous Delivery

Yocto Project Dev

(6 Months)

Product Developments

Staying current with development means you are up-to-date,

but you need to keep rebasing to stay current… churn can cause rework

With a CI/CD approach to released product, life span of a product

can be longer, as new features are easier to introduce.

96

Moving from CI to DevOps
Define quality objectives (OS & Product)

• How do you measure what the quality level is?

• Automation is key!

• Testing (OS)

• Frameworks(s)

• Community Tests

• Your Own Tests

• What is acceptable quality?

• Don’t have to test everything, but you need to test your use cases.

97

Moving from CI to DevOps
Define synchronization strategy (OS & Product)

• Merge or rebase?

• Merge hides technical debt

• Rebase brings technical debt ‘to the top’, at the expense of non-FF

• How often to resync?

• Daily – every 2 weeks

• What happens when there is a conflict?

• Who fixes the problem?

• Identify “changes”, and communication to users is key

• If/when to push upstream (lower technical debt)

98

Moving from CI to DevOps
Integration Strategy (Product)

• Decide when to integrate

• Keep OS and Product in lock step!

• Define Release Criteria

• What do we do if we can’t meet the criteria?

• “Skip” a release – focus on the next version

• How long is a release supported for?

• Short support windows are key

• The longer an individual release is maintained, the higher the work

required

• Think weeks, not years!

• Can’t overlook the need for some maintenance activities

• Always backport

99

Moving from CI to DevOps

2.7 M1
2.7 M2

2.7 M3
2.7 GA

2.8 M1
2.8 M2

2.8 M3 2.7 M1
2.7 M2

2.7 M3
2.7 GA

2.8 M1
2.8 M2

2.8 M3

Based on http://github.com/WindRiver-OpenSourceLabs – bitbake, oe-core, meta-yocto, meta-openembedded

http://github.com/WindRiver-OpenSourceLabs
http://github.com/WindRiver-OpenSourceLabs
http://github.com/WindRiver-OpenSourceLabs

100

Continuous Integration & Continuous Delivery

• Advantages:

• Ability to influence quality and features of OSS components

• Faster time to market/More up-to-date features

• Always active maintenance window

• New features and upgrades available

• Disadvantages:

• YP master Quality varies at different stages of development

• Need to be willing to ‘wait’, or contribute to improving the OSS quality

• Requires additional testing for risk management

• Need to prepare for when a required feature is made obsolete

Yocto Project | The Linux Foundation

Recap

102

LTS to DevOps
A journey, doesn’t happen overnight!

CI + LTS LTS DevOps

Variable
Variable (Dev)

 Small (Maint)
Small

Rate of

Change

 Yes (Dev)

None (Maint)
None

Feature

Changes

Grows over time Grows over time
Maint

Require

Fastest Faster Slow
Time to

Market

Yes

Predictable

A Lot Some None
Ability to

Influence

Yes No
Requires

Automation
Yes

Questions?

5. Binary Package Feeds for Yocto

John Mason

105

Download the presentation

https://wiki.yoctoproject.org/wiki/File:BinaryPackageFeed.pptx

6. Yocto Project state of the Union panel talk

Moderator: Behan Webster

7. Creating a Yocto/OE-core BSP layer for the

Google Coral Dev Board

Mirza Krak

108

• mender.io

• OTA updates for embedded

Linux devices

• Apache 2.0

• End-to-end solution

• ~40 device integrations using

Yocto Project

• Mirza Krak

• 8 years in embedded Linux

• Board Support Package

• Yocto Project

• Open source

About me

109

Session overview

• Share the journey of creating a BSP layer for the Coral Dev Board

• approach can probably be applied to other boards

110

Coral Dev Board - Hardware

SOC NXP i.MX 8M SoC (quad

Cortex-A53, Cortex-M4F)

GPU Integrated GC7000 Lite

Graphics

ML

accelerator

Google Edge TPU

coprocessor

RAM 1 GB LPDDR4

Flash

memory

8 GB eMMC

Wireless Wi-Fi 2x2 MIMO

(802.11b/g/n/ac 2.4/5GHz)

and Bluetooth 4.2

https://coral.withgoogle.com/products/dev-board

111

Coral Dev Board - Software

• Mendel Linux (release Chef)
• Mendel Linux is a lightweight derivative of Debian Linux

• Debian apt repositories

• Additions for Coral Dev Board peripherals

• Pre-built images

• Convenient for prototyping

112

Coral Dev Board - Software

• Contacted support

• Custom build system to generate images
• debootstrap wrapper

• https://coral.googlesource.com
• source code of all “extra” components and build system

113

Coral Dev Board - Software

• Forked BSP components
• uboot-imx

• linux-imx

• imx-firmware

• wayland-imx

• ….

• Only a few had actually been changed
• uboot-imx and linux-imx

114

Coral Dev Board - Software

• Conclusion: Based on NXP BSP
• could probably reuse much of what is in meta-freescale

• Obvious that they are using Yocto as reference
• “Import IMX8MM bl31/tee from Yocto”

115

meta-coral

• Depend on meta-freescale
• to get NXP BSP components

• Machine
• conf/machine/coral-dev.conf

• based on meta-freescale/conf/machine/imx8mqevk.conf

• updated dtb names, U-Boot defconfig etc..

116

meta-coral

• Started with U-Boot recipe
• u-boot-coral_2017.03.bb

• based on u-boot-imx_2017.03.bb from meta-freescale

(thud)

• had to make a small patch to imx-mkimage (hardcoded dtb

name)

• core-boot-script.bb (boot.txt from Mendel Linux)

117

meta-coral

• Linux kernel recipe
• linux-coral_4.9.51.bb

• based on linux-imx_4.9.123.bb from meta-freescale

• imported defconfig from linux-imx-debian (Mendel Linux)

118

meta-coral

• Custom WKS file to create disk image
• meta-coral/wic/coral-bootpart.wks.in

• image suitable to write to SD card (or eMMC)

• meta-freescale/wic/imx-imx-boot-bootpart.wks.in

part u-boot --source rawcopy --sourceparams="file=imx-boot" --ondisk mmcblk --no-table --align

${IMX_BOOT_SEEK}

part /boot --source bootimg-partition --ondisk mmcblk --fstype=ext4 --label boot --active --align 4096 --size 16

part / --source rootfs --ondisk mmcblk --fstype=ext4 --label root --align 4096

bootloader --ptable msdos

119

meta-coral - bootable

meta-coral/

├── conf

│ ├── layer.conf

│ └── machine

│ └── coral-dev.conf

├── recipes-bsp

│ ├── coral-boot-script

│ │ ├── cora-boot-script.bb

│ │ └── files

│ │ └── boot.txt

│ ├── imx-mkimage

│ │ ├── files

│ │ │ └── 0001-add-BOARD-argument.patch

│ │ └── imx-boot_0.2.bbappend

│ └── u-boot

│ ├── u-boot-coral

│ │ ├── 0001-tools-allow-to-override-python.patch

│ │ └── 0002-ext4-cache-extent-blocks-during-file-reads.patch

│ └── u-boot-coral_2017.03.bb

├── recipes-kernel

│ └── linux

│ ├── linux-coral

│ │ └── defconfig

│ └── linux-coral_4.9.51.bb

└── wic

 └── coral-bootpart.wks.in

120

meta-coral - Edge TPU

• ASIC designed by Google
• high performance ML inferencing for TensorFlow Lite

models

• PCIe and I2C/GPIO to interface with the iMX8M SoC

121

meta-coral - Edge TPU

• Binary blobs (libedgetpu)
• x86_64, armhf, arm64 (aarch64)

• depends on clang (meta-clang)

• libedgetpu_1.0.bb

• Python API (edgetpu)
• python3-edgetpu.bb

• Python Vision API (edgetpuvision)
• python3-edgetpuvision.bb

122

• Boot
• from SD card

• eMMC should work

• Ethernet

• HDMI

• WiFi

• Edge TPU

• Cooling fan

meta-coral - Works

123

meta-coral - Future work

• USB Gadget
• not tested yet

• Bluetooth
• not tested yet

• https://coral.googlesource.com/bluez-imx/

• Edge TPU still needs some work and testing
• recipes for examples/demos

• edgetpu-demo.bb
● issues with gstreamer1.0-plugins-base-imx

● requires gobject-introspection but disabled (error if enabled)

124

meta-coral - Future work

• New release of Mendel Linux (day)
• Not released

• Based on MM_04.04.05_1902_L4.14.x

• would like to include this in zeus branch

• QA
• automated builds

• Audio configuration
• port configuration from Mendel Linux

Yocto Project | The Linux Foundation

Demo

8. Building Container Images with the Yocto

Project

Mark Asselstine

Yocto Project | The Linux Foundation

1. Why Build Containers?

128

To Push to a Container Registry

• Secure/Insecure public or private Docker registries

• Secure public or private registries like Harbor

• Local container registry

Usecase – To make software available in the form of a

container to a deployed system

• Docker pull

• Kubernetes pod (kind: Deployment…containers: name)

129

To Include in a Rootfs

• Alternative to rpm or ipk

• To organize software (dependencies) and configuration,

example Apache

• To allow for simplified uprev, example replace ‘factory’

container with container pulled from a container registry

• To isolate Application and Platform SW

• To encapsulate 3rd party SW and required libraries

• To compartmentalize builds

• As a transition to microservices

Yocto Project | The Linux Foundation

2. Dockerfile - Simple

131

Hello World! Application

Code

#include <stdio.h>

int main(int argc, char **argv)

{

 printf("\nHello World!\n");

 return 0;

}

Compile

gcc -o hello -static -Os -fno-asynchronous-unwind-tables hello.c

132

Hello World! Dockerfile

Code
FROM scratch

COPY hello /

CMD ["/hello"]

Explanation

1. Don’t use a layer 1 (essentially a nop)

2. Copy the ‘hello’ executable to the root of the container

3. Default parameters to ENTRYPOINT

133

Hello World! Build and Prepare

Directory Contents
%> ls -l

total 20

-rw-r--r-- 1 root root 42 Oct 18 18:10 Dockerfile

-rwxr-xr-x 1 root root 9576 Oct 18 18:16 hello

-rw-r--r-- 1 root root 178 Oct 18 18:12 hello.c

Build the Container Image
docker image build -t hello-world:yp .

134

Hello World! Inspect and Run

Inspect
%> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world yp f3f730d7ee41 31 minutes ago 863kB

Run
docker run --rm hello-world:yp

Hello World!

135

The ‘git’ Container

Code
FROM alpine

LABEL maintainer Bill Wang ozbillwang@gmail.com

RUN apk --update add git less openssh && \

 rm -rf /var/lib/apt/lists/* && \

 rm /var/cache/apk/*

VOLUME /git

WORKDIR /git

ENTRYPOINT ["git"]

CMD ["--help"]

Reference: https://hub.docker.com/r/alpine/git/dockerfile/

mailto:ozbillwang@gmail.com
https://hub.docker.com/r/alpine/git/dockerfile/

136

Build the ‘git’ Container

%> time docker image build -t git .

Sending build context to Docker daemon 2.048kB

Step 1/7 : FROM alpine

…

Step 7/7 : CMD ["--help"]

 ---> Running in e1750d6b05eb

Removing intermediate container e1750d6b05eb

 ---> 128c824f6e91

Successfully built 128c824f6e91

Successfully tagged git:latest

real 0m17.356s

user 0m0.083s

sys 0m0.192s

%> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

git latest 128c824f6e91 3 minutes ago 29.2MB

alpine latest 961769676411 8 weeks ago 5.58MB

137

Hello World! Multi Stage

Code

• FROM alpine:latest AS builder

RUN apk --update add gcc libc-dev

COPY hello.c .

RUN gcc -o hello -static -Os -fno-asynchronous-unwind-tables hello.c

FROM scratch

COPY --from=builder hello /

CMD ["/hello"]

Inspect

• %> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest a891eee89a48 3 hours ago 93.2kB

138

What have we learned about Dockerfiles

• Pros

• Can produce small images

• Fast builds

• Dockerfile are easy to read, generally map to cmdline ops

• Cons

• Can produce large images

• No easy way to cross compile

• No easy way to know about licensing

Yocto Project | The Linux Foundation

3. About Container Images

140

Open Container Initiative(OCI) Container Format

The OCI specification defines a format for encoding a

container as a Filesystem Bundle

All the information required to load and run a container

Must Have:

• config.json – must be at the root, must be called

config.json, contains configuration data

• Root filesystem – must be at the root, referenced by

root.path in config.json
Reference: https://github.com/opencontainers/runtime-spec/blob/master/bundle.md

https://github.com/opencontainers/runtime-spec/blob/master/bundle.md
https://github.com/opencontainers/runtime-spec/blob/master/bundle.md
https://github.com/opencontainers/runtime-spec/blob/master/bundle.md

141

Docker Image Format

Depends on image format version but at its minimum Must

have:

• VERSION file

• Image JSON

• layer.tar

• A root filesystem image

 or

• Filesystem changeset

Reference: https://github.com/moby/moby/blob/master/image/spec/v1.2.md

https://github.com/moby/moby/blob/master/image/spec/v1.2.md

Yocto Project | The Linux Foundation

4. Using Yocto to Create a Container RootFS

143

image-container.bbclass

• Found in poky/meta/classes

• Enforces use of linux-dummy for

PREFERRED_PROVIDER_virtual/kernel

• Adds the ‘container’ IMAGE_FSTYPES

• Disables the installation of

ROOTFS_BOOTSTRAP_INSTALL (ie. run-postinsts)

• Inherited automatically with the inclusion of

‘container’ in IMAGE_FSTYPES

144

Configure a New Build and ‘local’ Layer

• . ~/git/poky/oe-init-build-env container-build

• cd container-build

• echo "IMAGE_FSTYPES='container'" >> conf/local.conf

• Echo " PREFERRED_PROVIDER_virtual/kernel = 'linux-dummy'" >> \

conf/local.conf

• bitbake-layers create-layer local

• bitbake-layers add-layer local

145

Populate ‘local’ layer

146

hello_0.1.bb

Code

• SUMMARY = "A Hello World example"

DESCRIPTION = "A simple Hello World example."

LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

SRC_URI = "file://hello.c"

S = "${WORKDIR}"

do_compile() {

 ${CC} -o ${B}/hello -static ${LDFLAGS} hello.c

}

do_install() {

 install -d ${D}${bindir}

 install -m 0755 ${B}/hello ${D}${bindir}

}

file://hello.c

147

Hello-world.bb

Code

• SUMMARY = "A Hello World container image rootfs"

DESCRIPTION = "A Hello World container image rootfs."

LICENSE = "MIT"
LIC_FILES_CHKSUM = "file://${COMMON_LICENSE_DIR}/MIT;md5=0835ade698e0bcf8506ecda2f7b4f302"

IMAGE_INSTALL = "hello"

IMAGE_FEATURES = " "

inherit image

148

Build, Import, Inspect and Run

• bitbake hello-world

• docker import \

tmp/deploy/images/qemux86-64/hello-world-qemux86-64.tar.bz2 hello-world

• docker run --rm hello-world /usr/bin/hello

Hello World!

• %> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest 75506629d2fc 37 minutes ago 3.73MB

149

Summary

Pros

• Yes it can be done

• Full Yocto Project benefits (license.manifest)

• Cross compile friendly

Cons

• Slow (mostly due to –native, 1200+ tasks,23 minutes)

• Large

• Requires Docker install or other metadata handler

Yocto Project | The Linux Foundation

5. Size

151

Shrinking Size

• glibc contributes to most of the size
-rwxr-xr-x 1 mark mark 671K Oct 21 21:03 hello

-rw-r--r-- 1 mark mark 2.9M Oct 25 14:33 locale-archive

• Use musl instead

%> TCLIBC=musl bitbake hello-world

• %> docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

hello-world latest 62200ca82e06 6 seconds ago 17.7kB

Yocto Project | The Linux Foundation

6. Cross Compile

153

Multiconfig

• Use ‘multiconfig’ to build several ARCH or MACHINE

in the same TOPDIR

• Shares many, but not all, -native packages

• Provides a way to build and include container images

in a rootfs in one ‘build’

154

Multiconfig Setup

• Add BBMULTICONFIG to local.conf

ex.: BBMULTICONFIG = "base container container-arm64“

• Setup ‘multiconfig’ directory

155

Multiconfig Setup

base.conf

• TMPDIR = "${TOPDIR}/base“

container.conf

• TCLIBC = "musl“

TMPDIR = "${TOPDIR}/container“

IMAGE_FSTYPES='container’

PREFERRED_PROVIDER_virtual/kernel = "linux-dummy“

Container-arm64.conf

• TCLIBC = "musl“

MACHINE = "qemuarm64“

TMPDIR = "${TOPDIR}/container-arm64“

IMAGE_FSTYPES='container’

PREFERRED_PROVIDER_virtual/kernel = "linux-dummy"

156

Multiconfig Build

• Build

%> bitbake mc:container:hello-world \

 mc:container-arm64:hello-world

• Result
%> ls container/deploy/images/qemux86-64/hello-world-qemux86-64.tar.bz2

container/deploy/images/qemux86-64/hello-world-qemux86-64.tar.bz2

%> ls container-arm64/deploy/images/qemuarm64/hello-world-qemuarm64.tar.bz2

container-arm64/deploy/images/qemuarm64/hello-world-qemuarm64.tar.bz2

Yocto Project | The Linux Foundation

7. Saving Time

158

Builder Container

Idea: create a cloud friendly container and reuse –native

build artifacts in the process

1. Complete a simple build – hello-world

2. Put the whole build into a container

3. Use the container to build more containers

159

2. Put the Whole Build into a Container

FROM debian:stretch-slim

COPY . /mark/bld/container

RUN apt update && apt install -y locales gawk wget git-core cpio \

 diffstat unzip texinfo gcc-multilib python2.7 python2.7-minimal \

 python-minimal build-essential chrpath socat libsdl1.2-dev xterm && \

 rm -rf /mark/bld/container/cbuilder/local && \

 rm -rf /mark/bld/container/cbuilder/tmp/deploy/images/qemux86-64 && \

 sed -i -e 's/# en_US.UTF-8 UTF-8/en_US.UTF-8 UTF-8/' /etc/locale.gen && \

 locale-gen

ENV HOME=/mark

ENV LANG en_US.UTF-8

ENV LANGUAGE en_US:en

ENV LC_ALL en_US.UTF-8

WORKDIR /mark/bld/container/cbuilder

VOLUME /mark/bld/container/cbuilder/local

 /mark/bld/container/cbuilder/tmp/deploy/images/qemux86-64

 /mark/bld/container/downloads

ENTRYPOINT ["/mark/bld/container/entrypoint.sh"]

160

3. Use the Container to Build More Containers

• Create a layer - similar to local layer created for Hello

World!

• Create an ‘out’ directory

• sudo docker run --rm -it \

-v $PWD/local:/mark/bld/container/cbuilder/local \

-v $PWD/out:/mark/bld/container/cbuilder/tmp/deploy/images/qemux86-64 \

yp-cbuilder bitbake <image-name>'

Yocto Project | The Linux Foundation

8. DevOps Example

162

Use Container Build in Test and Deploy

• Use Docker bindings with python scripts to run the

container and push it to a registry

163

Using Docker Python Bindings

164

Using Docker Python Bindings

• Import an image tarball
ret = call(["docker", "import", IMAGE_FILE, "simple-firewall"], stdout=FNULL)

• Push a container to a registry
image = docker_client.images.get("simple-firewall")

image.tag("localhost:5000/simple-firewall")

docker_client.images.push("localhost:5000/simple-firewall")

• Details see

https://github.com/masselstine/simple-firewall

Yocto Project | The Linux Foundation

9. Future Work / Ideas

166

Container Registry Fetcher

Idea: To include existing containers in a rootfs image

• Add the ability to write recipes which reference

existing containers on a registry

• Register included containers with a container runtime

to have them start automatically

167

Write container metadata

Idea: go beyond creating just the container images

• Write OCI compatible config.json

• Write Docker VERSION and Image JSON

• Provide the ability to push to a container registry from

the build

168

meta-overc

• OverC is a containerized OS framework

• Extensible via the addition of containers

• Supports runC container runtime natively

• Supports OCI container format natively

• Container image agnostic, works with OCI and Docker

image formats and repositories

• Provided as a Yocto Project layer

• Assembled by a custom installer (ie. No wic)

169

Use cube-builder to Seed a Build Container

Questions

9. Resulttool or: How I Learned to Stop

Worrying and Love testresults

Tim Orling

172

Download the slides from here:

• https://wiki.yoctoproject.org/wiki/File:Yocto_Project_S

ummit_2019_resulttool.pptx

Bonus Slides

Hash Equivalency/Runqueue

Joshua Watt

174

Outline

1. What is the Runqueue?

2. Traditional Runqueue Execution

3. What is the purpose of Hash Equivalence?

4. Runqueue Execution with Hash Equivalence Server

5. Signature Generation with Hash Equivalence Server

6. Live Demo

7. The Role of Reproducible Builds

8. Alternate Output Hash Methods

175

What is the Runqueue?

176

What is the Runqueue?

● The “queue” (tree) of tasks that bitbake will execute

for a given build
○ Records task dependencies

○ Record task state (completed, ready to run, not ready)

○ As tasks are executed bitbake marks them as complete

177

Traditional Runqueue Execution

178

A:do_configure

taskhash: 111

Traditional Runqueue Execution

A:do_populate_sysroot

taskhash: 222

B:do_configure

taskhash: 333

B:do_populate_sysroot

taskhash: 444

179

A:do_configure

taskhash: 111

Traditional Runqueue Execution

A:do_populate_sysroot:222

B:do_populate_sysroot:444

A:do_populate_sysroot

taskhash: 222

B:do_configure

taskhash: 333

B:do_populate_sysroot

taskhash: 444

180

Traditional Runqueue Execution

A:do_populate_sysroot:222
A:do_populate_sysroot_setscene

taskhash: 222

B:do_configure

taskhash: 333

B:do_populate_sysroot

taskhash: 444

181

A:do_configure

taskhash: aaa

Traditional Runqueue Execution

A:do_populate_sysroot:222

B:do_populate_sysroot:444

A:do_populate_sysroot

taskhash: bbb

B:do_configure

taskhash: ccc

B:do_populate_sysroot

taskhash: ddd

182

What is the purpose of Hash Equivalence?

● Improve the reuse of sstate

● Reduce unnecessary rebuilds of recipes

● Reduce build times

183

Runqueue Execution with Hash Equivalence
Server

184

A:do_configure

taskhash: 111

unihash: 111

Runqueue Execution with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

A:do_populate_sysroot

taskhash: 222

unihash: 222

B:do_configure

taskhash: 333

unihash: 333

B:do_populate_sysroot

taskhash: 444

unihash: 444

185

A:do_configure

taskhash: 111

unihash: 111

Runqueue Execution with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

A:do_populate_sysroot

taskhash: 222

unihash: 222

outhash: 123

B:do_configure

taskhash: 333

unihash: 333

B:do_populate_sysroot

taskhash: 444

unihash: 444

186

A:do_configure

taskhash: aaa

unihash: aaa

Runqueue Execution with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

A:do_populate_sysroot

taskhash: bbb

unihash: bbb

B:do_configure

taskhash: ccc

unihash: ccc

B:do_populate_sysroot

taskhash: ddd

unihash: ddd

187

A:do_configure

taskhash: aaa

unihash: aaa

Runqueue Execution with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot

taskhash: bbb

unihash: 222

outhash: 123

B:do_configure

taskhash: ccc

unihash: ccc

B:do_populate_sysroot

taskhash: ddd

unihash: ddd

188

A:do_configure

taskhash: aaa

unihash: aaa

Runqueue Execution with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot

taskhash: bbb

unihash: 222

B:do_configure

taskhash: 333

unihash: 333

B:do_populate_sysroot

taskhash: 444

unihash: 444

189

A:do_configure

taskhash: aaa

unihash: aaa

Runqueue Execution with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot

taskhash: bbb

unihash: 222

B:do_populate_sysroot_setscene

taskhash: 444

unihash: 444

190

Signature Generation with Hash
Equivalence Server

192

A:do_configure

taskhash: aaa

unihash: aaa

Signature Generation with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

193

A:do_configure

taskhash: aaa

unihash: aaa

Signature Generation with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot

taskhash: bbb

unihash: bbb

194

A:do_configure

taskhash: aaa

unihash: aaa

Signature Generation with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot

taskhash: bbb

unihash: 222

195

A:do_configure

taskhash: aaa

unihash: aaa

Signature Generation with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot

taskhash: bbb

unihash: 222

B:do_configure

taskhash: 333

unihash: 333

B:do_populate_sysroot

taskhash: 444

unihash: 444

196

Signature Generation with Hash Equivalence Server

A:do_populate_sysroot:222

B:do_populate_sysroot:444

Hash server

outhash 123 = taskhash 222

outhash 123 = taskhash bbb

A:do_populate_sysroot_setscene

taskhash: bbb

unihash: 222

B:do_populate_sysroot_setscene

taskhash: 444

unihash: 444

197

Live Demo & Exercise

198

The Role of Reproducible Builds

● Hash equivalence and reproducible builds go together
○ Better reproducibility means better hash equivalence

199

Alternative Output Hash Methods

● The output hashing method can be replaced

● Opportunity to implement context-sensitive hashes
○ ELF Library Symbol hashing

○ Scripting language specific hashing

○ Locking hashes

Questions and Answers

Thank you for your

participation!

