
HOB WEB

Architecture Overview

Uriel Liu – Chief Architect of Wicresoft

Revision History

Version Author Description

0.1 Uriel Liu Initial draft of the design

0.2 Uriel Liu Add more information in the design consideration

0.3 Uriel Liu Revise the prefetch part

0.4 Uriel Liu Add bitbake helper to off load event cache in web

server, move user authentication into web server

0.5 Uriel Liu Elaborate more in design consideration

0.6 Uriel Liu Add complete scenario

0.7 Uriel Liu Add scenario to release bitbake server

Goal

• To provide a WEB UI interface for end user to trigger a build

with Yocto

• Similar with HOB client, a user can select layers, platforms,

recipes and packages

• User can select what’s to be included in the final image among

the built packages where the accurate accumulated image size

can be known beforehand

• User can select among previous successful build

configurations to start another build directly without going

through the configuration again

• User’s authentication is closely linked with session, so that

user will be resume to the live build state when user’s browser

reconnects to HOB WEB site

Design Consideration

• Users:

• Two different roles – user and administrator

• Use local DB to store user’s successful build configuration

• Keep track of user’s build configuration at key steps from where the user left (maybe 5 entries

at most as an example)

• Bitbake server management:

• Dynamically addition/removal of the connection between web server and bitbake server

• Assume bitbake server could only serve one requestor at a time to assure performance and

responsiveness, therefore we need to enforce a strict single-entrance policy

• Web UI:

• The status of building packages and building image will be reflected in WEB UI

• Need a administrator UI to check the overall system status, add or remove bitbake servers,

user managements or so

• Pre-fetch all the possible build configuration of layers/machines/recipes/ in web server to

provide better user experience (minimize the communication between Web and bitbake

server

• Build:

• How to utilize intermediate outputs to provide better UE via speeding up build process

Architecture

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

Django

• We will use Django as our web server

• The user authentication and user management are natively provided
by Django, we’ll leverage this and maybe provide another consistent
user management frontend for administrator to manage users

• User request queue

• To queue the requests of users when all the active bitbake servers
are occupied for earlier users (need more discussion: how to provide
a good user experience for those waiting users?)

• HOB business logic

• To mimic the entire HOB business logic, the timeout module will help
to watch active user’s idle time to make sure the occupied bibake
could be released for other waiting users properly

• System administration

• To provide an interface for administrator to manage the system
including add/removal of bitbake servers, dashboard of bitbake
server status and queued requests or so

Database

• Store user’s build configuration

• To save the build configuration of previous successful builds

• To save the configuration of last incomplete builds(eg. Network

down unexpectedly, the user was distracted by other urgent thing)

for user to easily access later

• (Option and TBD) to save the build logs (or maybe saved in file

formats)

Management controller

• The major management module to manage bitbake server

status, user/bitbake server mapping and the others

• Bitbake server management

• Administrator can dynamically add/remove a bitbake server

• A health check thread will rountinely polling bitbake server to get

the latest status

• Server status could be [Available] [Reserved] [Down] and the

others

• User-bitbake mapping

• When a user logins the system, an available bitbake server will be

reserved for him and we will keep the user/bitbake mapping

information here

• Event Processer

Management controller – cont.

• Build Event Processer

• When bitbake starts to build package or build image which takes

longer time than the other steps, this module will periodically

poll bitbake servers to get the cached events and then process

them to the most valuable build status when user’s browser tries

to get the build status through Django(via AJAX).

• The most valuable build status consists of 3 major parts:

• Latest event (latest build event including build package, percentage

and the others)

• Major error (all the error that user concerns)

• Past build progress (a summary telling how many packages/recipes

are built or so)

A complete scenario – Reserve a bitbake server

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

User A

(user A, bitbake A)

(user A, bitbake A)

A complete scenario – Normal flow

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

User A

(user A, bitbake A)

Bitbake A

A complete scenario – build package

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

User A, build pkg

(user A, bitbake A)

events
processed events

displaying status

A complete scenario – build complete

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

(user A, bitbake A)

Events(build img complete)
processed events (build img complete)

displaying status

A complete scenario – release bitbake server

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

(user A, bitbake A)

POC goal (one user / one bitbake)

End User

DB

UI Renderer

User

management

System

administration

Django

Pre-fetched build

configurations

Web Server

Bitbake servers

REST

Image server

bitbake

Cached

events
helper

User request queue

User

authentication

Bitbake server management

User-Bitbake Mapping

Build Event Processor

Management Controller

HOB business logic
Time out

module

User Interaction Flow (start from scratch)

User login

Select layers/machine

Session

Timeout

Select base image

& customize recipes

Session

Timeout

Build Packages

Session

Timeout

Rebuild session

w/ user account

Build Image

Session

Timeout

Rebuild session

w/ user account

Select packages

& check image size

Session

Timeout

Build

Complete

User Interaction Flow (start from template)

User login

Upload template

Session

Timeout

Customize recipes

Session

Timeout

Build Packages

Session

Timeout

Rebuild session

w/ user account

Build Image

Session

Timeout

Rebuild session

w/ user account

Select packages

& check image size

Session

Timeout

Build

Complete

User Interaction Flow (from previous build

configuration)

User login

Select previous

built image

Session

Timeout

Build Image

Session

Timeout

Rebuild session

w/ user account

Build

Complete

User State Transition

Home

Build
Complete

Build
Image

Build
Packages

Config

start to use

select recipes &

then build pkgs

select pkgs &

then build image
Time

consuming

Time

consuming

occupies bitbake server occupies bitbake server

