Ct It’s not an embedded Linux distribution -
O O) It creates a custom one for you.

PROIJECT

Yocto BSP Summit
BSP format, Kernels, and Tools

Tom Zanussi
Intel Corporation
April 2, 2012

These slides are available
now on the Yocto website. Go
to Documentation | Yocto
Wiki | Projects | BSPs | Yocto
BSP Summit Presentation

NNNNNNNN
PROJECT

Agenda

The Yocto BSP Format
- Background and motivation
« Current Yocto BSP format and contents

Kernels

- Available kernel options

- What's been useful for meta-intel
- Some new changes

Yocto BSP and Kernel Tools
- What they are and how they work
- BSP creation and kernel patching/config examples

Questions and Discussion
- What's missing? What else would people like to see, if anything?

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 2/38

FOUNDATION

http://www.yoctoproject.org/

My Background

Joined Intel (and Yocto) in Sept 2010

Author and maintainer of several meta-intel BSPs
Co-author of the current 'Yocto BSP Guide'
Author of the new 'Yocto BSP Tools'

Previously worked in the kernel mainly on tracing

- Author of kernel/relay.c (relayfs), perf scripting interface
and Perl/Python bindings, perf 'live mode’, kernel event
filters (kernel/trace/trace_events filter.c)

- Major contributor to blktrace, LTT, and systemtap
* Created systemtap, blktrace, sysprof recipes
Other odds and ends related to BSPs and tracing

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 3/38

NNNNNNNNNN
PPPPPPP

http://www.yoctoproject.org/

Yocto BSP Format

 What is a Yocto BSP?

* Logically speaking, a Yocto BSP is:
- A bitbake layer enabling a specific machine or machines

- Contains hardware-specific components only

- Exists as a single independent directory of metadata

- Can be directly tar'ed, distributed, and built
- Can be independently maintained inside an external repository

- This is what developers see
* When packaged and distributed, a BSP is:

- Binary part: deployed binaries from the build, for example, a runnable
Linux image which can be booted on the hardware

- Source part: the set of recipes and other metadata that were used to
generate the bundled binaries

- This is what we make available on the 'Yocto BSP Downloads' page

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 4/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/

Yocto BSP Format (Why?)

* Why do we need a BSP format?

* The main reason is packaging:

- We want to be able to point users to a tarball for BSP X
- At 'Yocto | Download | Board Support Package (BSP) Downloads'

- Everything needed to build the BSP is in the tarball
- Minus of course the distro metadata, build system, toolchain, etc

- And nothing unrelated to the BSP is in the tarball
* Like other BSPs

* Also the standard reasons:
- Consistency
- Familiarity
- Standardization
 Collaboration

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 5/38

NNNNNNNNNN
PPPPPPP

http://www.yoctoproject.org/

'Source' Part of a Yocto BSP

Machine configuration
- Metadata defining architecture-specific tuning and options
- Bootloader configuration
Kernel configuration
- Patches against a Linux kernel version
- Kernel config options
Device firmware
Supporting user space
- Hardware-specific applications
- Additional vertical use-specific applications
Toolchain and build system not part of BSP
- Defined in other layers

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 6/38

NNNNNNNNNN
PPPPPPP

http://www.yoctoproject.org/

Binary part of a Yocto BSP

Provided under <meta-bsp>/binary

Complete bootable disk image

 Or whatever build artifacts are needed to boot on
hardware

A README for how to boot the image
- Part of the README in the top-level of the BSP directory
Functionality may be limited

- You may not want the binaries to be redistributed

- In other words, you're not creating a distro, just a test image
- For example, a single terminal or time-limited kernel
Should allow a developer to see if the board
comes up

- Typically both a minimal and a graphical image are
bundled

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO . LINUX

FOUNDATION
PPPPPPP

7/38

http://www.yoctoproject.org/

A Brief History of the BSP Format

- Details and examples are available in the 'Yocto BSP
Developer's Guide'

- Before Yocto the Guide was part of the 'Poky Handbook'

- The BSP section first appeared in the Poky 'green' release (Poky 3.3, July
2010)

- The format has evolved over time
« Historically the layout has mirrored the structure of Poky

- Both the current format and Guide have been around since
'‘bernard’' (Poky 5.0/Yocto 1.0, March 2011)

- Made to match the current Poky/Yocto layout

- At that point, there was one meta-intel BSP, meta-emenlow

. It was moved out of Poky and into a separate meta-intel repo
- And it was updated to use the new BSP Format

- Since then all the meta-intel BSPs have followed the format

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 8/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/

BSP file system layout (laverne (Poky 4.0), Oct 2010)

meta-bsp/

meta-bsp/binary/zImage
meta-bsp/binary/poky-image-minimal.directdisk
meta-bsp/conf/layer.conf

meta-bsp/conf/machine/*.conf
meta-bsp/conf/machine/include/tune-*.1inc
meta-bsp/packages/bootloader/bootloader 0.1.bb
meta-bsp/packages/linux/linux-bsp-2.6.50/*.patch
meta-bsp/packages/linux/linux-bsp-2.6.50/defconfig-bsp
meta-bsp/packages/linux/linux-bsp 2.6.50.bb
meta-bsp/packages/modem/modem-driver 0.1.bb
meta-bsp/packages/modem/modem-daemon 0.1.bb
meta-bsp/packages/image-creator/image-creator-native 0.1.bb

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX

FOUNDATION
PROIJECT

9/38

BSP file system layout (edison (Poky 6.0/Yocto 1.1), Oct 2011)

meta-crownbay/COPYING.MIT

meta-crownbay/README

meta-crownbay/README. sources

meta-crownbay/binary

meta-crownbay/conf/layer.conf

meta-crownbay/conf/machine/crownbay.conf
meta-crownbay/conf/machine/crownbay-noemgd.conf
meta-crownbay/recipes-bsp/formfactor/formfactor _0.0.bbappend
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config 0.1.bbappend
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/

meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-
noemgd/xorg.conf

meta-crownbay/recipes-kernel/linux/linux-yocto-rt_3.0.bbappend
meta-crownbay/recipes-kernel/linux/linux-yocto 2.6.37.bbappend
meta-crownbay/recipes-kernel/linux/linux-yocto 3.0.bbappend

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 10/38

FOUNDATION
PROIJECT

BSP Components

License file(s):

- meta-<bsp name>/<bsp license file>

- Examples: COPYING.MIT, COPYING (GPLv2)

README file

- meta-<bsp_name>/README

- How to build and boot the BSP, hardware/software details
README.sources file (for packaged BSPs)

- meta-<bsp name>/README.sources

- Location of the sources that generated the bundled image(s)
Pre-built binaries (for packaged BSPs)

- meta-<bsp name>/binary/<bootable images>

- Bootable target kernel/rootfs, typically minimal and sato
Layer configuration file

- meta-<bsp _name>/conf/layer.conf

- Defines the BSP as a Yocto layer

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 11/38

NNNNNNNNNN
PPPPPPP

http://www.yoctoproject.org/

BSP Components (cont'd)

Machine configuration file(s)
- meta-<bsp_name=>/conf/machine/*.conf

- Machine-specific parameters: kernel choice, machine and kernel
features, bootloader info, image format info, compiler tuning options

Recipe files and recipe extensions (.bb and .bbappends)
- meta-<bsp name>/recipes-bsp/*

- meta-<bsp name>/recipes-core/*

- meta-<bsp _name>/recipes-graphics/*

Kernel recipes and extensions (.bb and .bbappends)

- meta-<bsp name>/recipes-kernel/linux/linux-x_y*.bb

- meta-<bsp _name>/recipes-kernel/linux/linux-korg.bb

- meta-<bsp_name>/recipes-kernel/linux/linux-yocto*.bbappend
Kernel patches and configuration

- meta-<bsp name>/recipes-kernel/linux/linux-x_y/*.patch | *defconfig
- meta-<bsp name>/recipes-kernel/linux/linux-korg/*.patch | *.cfg

- meta-<bsp name>/recipes-kernel/linux/linux-yocto/*.patch | *.cfg

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 12/38

FOUNDATION

http://www.yoctoproject.org/

BSP Layout

* If you look closely at the BSP Guide, you see:

- Mostly everything is optional

- But what you do include should fit the format
 Advantages of the current format:

- The layout fits naturally with the poky/oe-core layout

- Listing standard files such as README help overall quality

* Including binaries, instructions, and metadata in a
standard way is convenient for new users

- The standard format makes it easier to create BSP tooling

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 13/38

NNNNNNNNNN
PPPPPPP

http://www.yoctoproject.org/

BSP Release Process

* BSPs can be made available on the Yocto site

« http://www.yoctoproject.org/download/all?keys=&download type=1&download version=
* Here's the process:

 https://wiki.yoctoproject.org/wiki/Third _Party BSP Release Process

- Submit the BSP for review on the Yocto mailing list

- Agree to be the maintainer of the BSP

- Work with Yocto release engineer on release logistics

- The BSP will then be hosted (and announced if desired)

- You can also host it yourself and link from the Yocto page

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 14/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/download/all?keys=&download_type=1&download_version
https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process
http://www.yoctoproject.org/

Kernels

* The kernel is just another package, right?
- Yes and no
* Yes, it's represented by a recipe just like everything else

- But it's so central and has so many configurable options
that need continual tweaking that it's in fact very different

- Most recipes are 'set it and forget it'
- The kernel is not

- So an accordingly powerful means of interacting with it is
necessary

* Yocto has several kernel options:

- User-defined kernel recipe (kernel.org tarball for example)

- Recipe to 'yoctoize' kernel.org git (or your own git kernel)
- 'Yocto' kernels

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 15/38

NNNNNNNNNN
PPPPPPP

http://www.yoctoproject.org/

User-defined Kernel Recipe

A Yocto recipe just like any other
« The SRC_URI points to a tarball like any other recipe does
- It's patched via the SRC_URI just like any other recipe is

$ cat linux _3.0.18.bb

DESCRIPTION = "Mainline Linux Kernel"

SECTION = "kernel"

LICENSE = "GPLv2"

LIC FILES CHKSUM = "file://COPYING;md5=d7810fab7487fbh0aad327b76f1lbe7cd7"

inherit kernel

SRC_URI = "${KERNELORG_MIRROR}/linux/kernel/v3.0/linux-$
{PV}.tar.bz2;name=kernel \

file://defconfig "
SRC_URI += "file://yocto-testmod.patch"

SRC URI[kernel.md5sum] = "67252770d7009eabe8bac7c26e074f9d"

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX

FOUNDATION
PROIJECT

16/38

http://www.yoctoproject.org/

User-defined Kernel Recipe (cont'd)

* Suppose we have a patch and couple config items
- drivers/misc/yocto-testmod.patch
+ A test module that prints a silly message on module_init()
« A couple options to turn it on
- CONFIG_MISC_DEVICES = y and CONFIG_YOCTO TESTMOD =y
* To apply the patch and turn it on:

- We need to add the patch to the SRC_URI
« SRC URI += "file://yocto-testmod.patch"

- And add the kernel options directly to the defconfig
« SRC URI += "file://defconfig"

* 'config fragments' not available
- defconfig is a simple list of config items

- May be difficult to separate what was configured
automatically by kbuild versus what was set by a user

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 17/38

NNNNNNNNNN
PPPPPPP

smb://yocto-testmod.patch/
smb://defconfig/
http://www.yoctoproject.org/

'Yoctoized' Arbitrary Kernel Recipe

* linux-korg.bb is a kernel recipe in poky-extras
- It's not officially supported (but will be, discussed later)

- All the yocto-specific variables have been removed

$ cat poky-extras/meta-kernel-dev/recipes-kernel/linux/linux-korg.bb

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

KMACHINE = "yocto/standard/auto-bsp"
YOCTO KERNEL_EXTERNAL_BRANCH ?= "yocto/standard/auto-bsp"

KBRANCH = ${KMACHINE}
KMETA = meta

SRC_URI = "git:///home/kernellab/labl/linux;protocol=file;nocheckout=1"

SRC_URI += " file://defconfig file://yocto-testmod.patch \
file://yocto-testmod.cfg"

SRCREV=${AUTOREV}

LINUX_VERSION_EXTENSION ?= "-yoctized-${LINUX_KERNEL_TYPE}"
Functionality flags

KERNEL_REVISION CHECKING=

YOCTO KERNEL_META_DATA=

require recipes-kernel/linux/linux-tools.inc

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO .

PROJECT

TJLINUX

FOUNDATION

18/38

http://www.yoctoproject.org/

'Yoctoized' Arbitrary Kernel Recipe (cont'd)

linux-korg.bb 'yoctoizes' any arbitrary kernel

- Defaults to Linus' git tree:
- SRC_URI = "git://git.kernel.org/.../torvalds/linux.git;protocol=git"

- But we can point it to any other kernel repo:
« SRC_URI = "git:///nome/kernellab/labl/linux.git;protocol=file"

It can be customized via the SRC_URI

- SRC_URI += "file://defconfig file://yocto-testmod.patch \
file://yocto-testmod.cfg”

We can use 'config fragments'

- yocto-testmod.cfg adds CONFIG_MISC DEVICES and
CONFIG_YOCTO_TESTMOD

We can create and use 'kernel features':

- Config fragments and kernel patches in one
- KERNEL FEATURES append = “features/yocto-testmod”

 Enables Yocto 'kernel tooling' for any git kernel

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 19/38

NNNNNNNNNN
PPPPPPP

smb://yocto-testmod.cfg/
http://www.yoctoproject.org/

linux-yocto 3.2.bb

$ cat meta/recipes-kernel/linux/linux-yocto_3.2.bb

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

KMACHINE = "common-pc"
KMACHINE_gemux86 = 'common-pc"

KBRANCH = "standard/default/base"
KBRANCH_qemux86 = "standard/default/common-pc/base"

SRCREV_machine_qemuppc ?= "74364f1062a219eb242d7cb300a404516c297601"
SRCREV_machine ?= "6fl64aedef5aeec2bef40alb936aclfIhb9db46ba"
SRCREV_meta ?= "8295227f068f78ec3c433529e4012a38773a88c9"

SRC_URI = "git://git.yoctoproject.org/linux-yocto-
3.2;protocol=git;bareclone=1;branch=${KBRANCH},meta; name=machine,meta"

KERNEL_FEATURES="features/netfilter"
KERNEL_FEATURES_append=" features/taskstats"
KERNEL _FEATURES_ append gemux86=" cfg/sound"

require linux-tools.inc

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX

FOUNDATION
PROIJECT

20/38

Yocto Kernel Recipe (cont'd)

* A 'Yocto' kernel is just a kernel.org kernel
- Inside a repo with other branches

- The starting point is a kernel.org kernel snapshot
- This is the 'master' branch - it's a snapshot and never changes

« Other branches inherit this branch and add commits

- yocto/base inherits 'master
- All other branches normally inherit this
- This is where 'stable' is merged or anything global like security
- yocto/standard/base inherits yocto/base
- This adds really common stuff all BSPs normally want
- It also inherits everything from yocto/base i.e stable, security
- yocto/standard/common-pc inherits yocto/standard/base
- This adds really common stuff all ‘common pc's' normally want
- It also inherits all of yocto/standard/base (and in turn yocto/base)

- Finally, your BSP branch can inherit from any of the above

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 21/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/

Yocto Kernel Recipe (cont'd)

* Inherited branches get all updates for free
- Any BSP based on a Yocto kernel automatically gets stable
updates for instance
- The 'meta’' branch represents configuration

- Groupings of common config settings as 'fragments’

- These can be added as .cfg files to the kernel SRC_URI
- Groupings of common config/patches as 'features’

- These can be added via recipe-space KERNEL FEATURE appends

- See meta/kernel-cache/features and ../cfg for the available list
- This allows these settings to be used as a group between BSPs

and allows them to be independently added

- Each BSP also has a specific starting configuration in meta

- See meta/kernel-cache/bsp/<bsp-name>/<bsp>-<ktype>.scc

- The tools find the .scc that matches MACHINE/KTYPE/parent branch

- That starts the process of including the configs inherited up the chain

- Also a place to hard-code features and config fragments, avoiding SRC_URI

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 22/38

PROJECT

http://www.yoctoproject.org/

Yocto Kernel Branches and Updates

Branch

master

meta

yocto/base

yocto/eg20t

yocto/emgd

yocto/emgd-1.10

yocto/gmas00

yocto/pvr

yocto/standard/arm-versatile-926e]s

yocto/standard/base

yocto/standard/beagleboard

yocto/standard/cedartrail

yocto/standard/common-pc-64/base

yocto/standard/common-pc-64/jasperforest

yocto/standard/commaon-pc-64/romley

yocto/standard/common-pc-64/sugarbay

yocto/standard/common-pc/atom-pc

yocto/standard/commaon-pc/base

yocto/standard/crownbay

yocto/standard/emenlow

yocto/standard/fishriver

yocto/standard/fri2

yocto/standard/fsl-mpc8315e-rdb

yocto/standard/mti-malta32-be

yocto/standard/mti-malta32-le
octo/standard/pandaboard

Yocto BSP Summit 2012

Commit message

Merge git://git.kernel.org/pub/scm/linux/kemel/git/davem/sparc

meta: bumping kver to v3.0.24

Merge commit 'v3.0.24" into yocto/base

WR Linux baseline

yocto/emgd: 3.0 fixes

yocto/emgd: initial build fixups

WR Linux baseline

yocto/pvr: add hdmi/acpi definitions

Merge branch ‘yocto/standard/base’ into yocto/standard/arm-versatile-926ejs
Merge branch ‘yocto/base’ into yocto/standard/base

Merge branch ‘yocto/standard/base’ into yocto/standard/beagleboard

Merge branch 'yocto/standard/base’ into yocto/standard/cedartrail

Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc-64/base
Merge branch 'yocto/standard/base’ into yocto/standard/common-pc-64/jasperforest
Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc-64/romley
Merge branch 'yocto/standard/base’ into yocto/standard/common-pc-64/sugarbay
Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc/atom-pc
Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc/base
Merge branch ‘yocto/standard/base’ into yocto/standard/crownbay

Merge branch 'yocto/standard/base’ into yocto/standard/emenlow

Merge branch ‘yocto/standard/base’ into yocto/standard/fishriver

Merge branch ‘yocto/standard/base’ into yocto/standard/fri2

Merge branch ‘yocto/standard/base’ into yocto/standard/fsl-mpc8315e-rdb
Merge branch 'yocto/standard/base’ into yocto/standard/mti-malta32-be

Merge branch ‘yocto/standard/base’ into yocto/standard/mti-malta32-le
v3.0.24 -> pandaboard merge fixup

www.yoctoproject.org yocto - rIiinux

FOUNDATION
PROIJECT

Author

Linus Torvalds
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Tom Zanussi
Tom Zanussi
Bruce Ashfield
Kishore Bodke
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield
Bruce Ashfield

Some new Yocto kernel Changes

New linux-yocto-custom.bb recipe
- An easy-to-use entry point for taking advantage of Yocto kernel tooling
- Provides a Yocto-jargon-free mechanism to use your own kernel
- Well-documented
Ability to use an 'externalsrc' kernel
. Point the kernel recipe to an existing local kernel tree
- The build system will compile and deploy it but 'keep its hands off' otherwise
- Allows you to do kernel development 'the old fashioned way"
‘'master’ is the default when creating new BSPs using linux-yocto
- The 'master' branch will point to the current 'stable’ Linux kernel
- SO0 when you create a new BSP, you're simply basing on current 'stable’
. You'll have to opt-in to base on Yocto branches like 'standard/base’
General branch cleanup
- 'meta’' no longer has confusing upstream kernel commits
Tool to generate patchset from git branches
- To make it easier to see changes in patch form

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 24/38

FOUNDATION
PROIJECT

http://www.yoctoproject.org/

The new 'Yoctoized' Arbitrary Kernel Recipe

» linux-yocto-custom.bb
- Similar to linux-korg.bb but an official recipe
- All the Yocto-specific variables have been removed
- Defaults to the kernel.org kernel (so replaces linux-korg.bb)
- Defaults to arch defconfig if no defconfig specified

$ cat poky-extras/meta-kernel-dev/recipes-kernel/linux-yocto-custom.bb

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

point this to the git repository of choice
SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git;protocol=git;nocheckout=1"

SRCREV="${AUTOREV}"
LINUX_VERSION ?= "3.3"

LINUX_VERSION_EXTENSION = "-custom"
PR = "roO"
PV = "${LINUX_VERSION}+git${SRCPV}"

COMPATIBLE_MACHINE = "(gemuarm]|gemux86|qemuppc|qemumips |qemux86-64)"

require recipes-kernel/linux/linux-tools.inc

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 25/38

FOUNDATION
PROIJECT

http://www.yoctoproject.org/

The new 'Yoctoized' Arbitrary Kernel Recipe

- Select the custom kernel as the BSP's kernel
- PREFERRED_PROVIDER virtual/kernel = "linux-yocto-custom"
. Customize it via .bbappend
- Point to your own kernel repo
- Add defconfig or config fragments or kernel features
- Enables any git-based kernel repo to be the upstream kernel
- Use your own repo but gain ability to use fragments and features
- Work towards something that could be sent to linux-yocto
- Or just as a local collection of features and metadata in your own repo

$ cat meta-mybsp/recipes-kernel/linux/linux-yocto-custom.bbappend
SRC_URI = "git://myrepo.github.org/linux.git;protocol=git;nocheckout=1"
SRC_URI += " file://defconfig \

file://yocto-testmod.patch \

file://yocto-testmod.cfg"

KERNEL_FEATURES_append=" features/testmod"

SRCREV="c16fa4f2ad19908a47c63d8fa436al1178438c7e7"

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 26/38

FOUNDATION
PROIJECT

smb://defconfig/
smb://yocto-testmod.cfg/
http://www.yoctoproject.org/

A few examples from meta-intel

- EMGD
- Large kernel patch (5Mb), will never be upstreamed
- Used by many meta-intel BSPs
- We don't want to add this patch to every recipe

- With a 'user-defined' kernel recipe each BSP would duplicate the patch

- With linux-yocto, we don't have to. Instead we can:
« Put the EMGD driver into a topic branch (emgd-1.10)
- Use 'git merge' to merge it into a given BSP

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/crownbay/crownbay-standard.scc

define KMACHINE crownbay
define KTYPE standard
define KARCH 1386

include ktypes/standard
branch crownbay

include features/emgd/emgd-1.10.scc
git merge emgd-1.10

include crownbay.scc

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX

FOUNDATION
PROIJECT

27/38

http://www.yoctoproject.org/

A few examples from meta-intel

- Intel power settings
- Most Intel BSPs share a bunch of common power settings
. It's very convenient to have them visible as a group

- Any BSP that wants to use them simply includes them:
« include features/power/intel.scc (includes intel.cfg)

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/features/power/intel.cfg

use the native intel cpuidle driver for recent Intel processors
CONFIG_INTEL_IDLE=y

cut out the top source of unnecessary wakeups
CONFIG_NO HZ=y

enable apps to cut down on polling
CONFIG_INOTIFY USER=y

enable cpu frequency scaling and stats for powertop
enable power management debugging for tools like powertop
turn on run-time power management

CONFIG_PM_RUNTIME=y

allow usb runtime power management
CONFIG_USB_SUSPEND=y

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX

FOUNDATION
PROIJECT

28/38

http://www.yoctoproject.org/

A few examples from meta-intel

* In general, each BSP is different

- Some BSPs have local groupings they like to keep straight
- Each BSP might have its own set of one-off config settings

« Most BSPs also include some non-hardware features

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/emenlow/emenlow.scc
kconf non-hardware reboot-quirk.cfg

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/emenlow/reboot-quirk.cfg
CONFIG_CMDLINE_BOOL=y
CONFIG_CMDLINE="reboot=pci"

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/jasperforest/jasperforest.cfg
NUMA support

CONFIG_NUMA=y

CONFIG _X86_64 ACPI_NUMA=y

CONFIG_NODES_SPAN_OTHER_NODES=y

CONFIG_USE_PERCPU_NUMA_NODE_ID=y

CONFIG_ACPI_NUMA=y

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/fri2/fri2-standard.scc
include features/latencytop/latencytop.scc

include features/profiling/profiling.scc

include cfg/efi-ext.scc

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX

FOUNDATION
PROIJECT

29/38

http://www.yoctoproject.org/

Yocto BSP Tools

« A new set of tools to help users:
- Start a new BSP
- Manage kernel patches and config options

- 'yocto-bsp' creates an initial Yocto BSP
- Creates an initial buildable image that may or may not boot
- Just a starting point, ultimately the user must make it work
- With a standardized BSP format, tooling is easier

- 'yocto-kernel' allows users to add and remove patches
and config items from the command line

- Lots of context required to deal directly with linux-yocto metadata
- Managing patches and .cfg items is tedious and error-prone
- Dealing with multiple branches adds to the confusion

- 'yocto-kernel' abstracts the details with a friendly guided interface
- Users never have to know anything about the internals of the kernel recipe

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 30/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/

Create a BSP using 'yocto-bsp'

trz@elmorro: /usr/local/dev/Yocto$ yocto-bsp create myintelbsp x86 64

Would you like to use the default (3.2) kernel? (y/n) [default: y]

Do you need a new machine branch for this BSP (the alternative is to re-use an existing
branch)? [y/n] [default: y]

Getting branches from remote repo git://git.yoctoproject.org/linux-yocto-3.2...

Please choose a machine branch to base this BSP on: [default: standard/default/common-pc-
64]

3) standard/default/arm-versatile-926ejs

4) standard/default/base

8) standard/default/common-pc-64/jasperforest
17) standard/default/fsl-mpc8315e-rdb

20) standard/default/preempt-rt

Do you need SMP support? (y/n) [default: y]

Do you need support for X? (y/n) [default: y]

Please select an xserver for this machine: [default: xserver_ 1915]
1) VESA xserver support

2) 1915 xserver support

Does your BSP have a touchscreen? (y/n) [default: n]
Does your BSP have a keyboard? (y/n) [default: y]

New x86 64 BSP created in meta-myintelbsp

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 31/38

FOUNDATION
PROIJECT

yocto-bsp

- yocto-bsp and yocto-kernel are Python scripts
- They live under top-level yocto repo scripts/ dir
- The main implementation is under scripts/lib/bsp
- BSP template files live under scripts/lib/bsp/substrate/target/arch/XXX
- There's a subdirectory for each Yocto arch, plus 'common' and ‘gemu’

$ find scripts

scripts/yocto-bsp

scripts/yocto-kernel

scripts/lib/bsp/engine.py
scripts/lib/bsp/substrate/target/arch/common/README
scripts/lib/bsp/substrate/target/arch/common/conf/layer.conf

scripts/lib/bsp/substrate/target/arch/qemu/recipes-kernel/linux/files/{{=machine}}-
standard.scc

scripts/lib/bsp/substrate/target/arch/arm/conf/machine/{{=machine}}.conf
scripts/lib/bsp/substrate/target/arch/powerpc/recipes-kernel/linux/{{ if

kernel choice == "linux-yocto 3.2": }} linux-yocto 3.2.bbappend
scripts/lib/bsp/substrate/target/arch/i386/recipes-graphics/xorg-xserver/xserver-
xf86-config/{{=machine}}/{{ if xserver_choice == "xserver i915": }} xorg.conf

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 32/38

FOUNDATION
PROIJECT

http://www.yoctoproject.org/

Yocto-bsp (cont'd)

. Each file in 'substrate/target/arch/*' is a template file

- The files are copied into the target BSP
- Tags of the form {{=var}} are replaced by that variable
- Conditional inclusion, looping, etc are accomplished by in-line Python inside {{ tags }}

. yocto-bsp creates a BSP-generating Python program that when executed
writes the BSP files with variable substitution and logic

- Tags of the form {{ input ... }} generate user input elements

$ cat scripts/lib/bsp/substrate/target/arch/i386/conf/machine/{{=machine}}.conf

#@TYPE: Machine
#@NAME: {{=machine}}

#@DESCRIPTION: Machine configuration for {{=machine}} systems

{{ preferred_kernel version = kernel choice.split(' ')[1] }}
PREFERRED VERSION {{=preferred kernel}} ?= "{{=preferred_kernel version}}%"

{{ input type:"boolean" name:"xserver" prio:"50" msg:"Do you need support for X?
(Y/n)" default:"y" }}

{{ if xserver == "y": }}
XSERVER ?= "${XSERVER IA32 BASE} ${XSERVER IA32 EXT}"

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 33/38

FOUNDATION
PROIJECT

http://www.yoctoproject.org/

Mod the kernel with 'yocto-kernel’

$ yocto-kernel patch add mygemuarm /home/trz/newpatches/yocto-testmod.patch
Added patches:
yocto-testmod.patch

$ yocto-kernel config add myqemuarm CONFIG_MISC DEVICES=y
Added items:
CONFIG_MISC DEVICES=y

$ yocto-kernel patch rm mygemuarm
Specify the patches to remove:

1) yocto-testmod.patch

1
Removed patches:
yocto-testmod.patch

$ yocto-kernel config rm myqemuarm
Specify the kernel config items to remove:
1) CONFIG_MISC_DEVICES=y

2) CONFIG_YOCTO TESTMOD=y

1
Removed items:
CONFIG_MISC_DEVICES=y

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 34/38

FOUNDATION
PROIJECT

yocto-kernel

 Everything yocto-kernel does is visible in the
SRC_URI of the BSP's kernel recipe .bbappend

- The items will appear either directly in the SRC _URI or in a file
named in recipes-kernel/linux/files/

$ cat meta-foo/recipes-kernel/linux/linux-yocto 3.2.bbappend

SRC_URI += " \
file://foo-standard.scc \
file://foo.scc \
file://foo.cfg \
file://user-config.cfg \
file://user-patches.scc \
file://yocto-testmod.patch \

$ cat meta-foo/recipes-kernel/linux/files/user-config.cfg

CONFIG_MISC DEVICES=y
CONFIG_YOCTO TESTMOD=y

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 35/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/

Discussion

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 36/38

NNNNNNNN
PROJECT

Resources

* The Yocto Project BSP Developer's Guide

+ http://www.yoctoproject.org/docs/current/bsp-guide/bsp-guide.html

* The Yocto Project BSP Tools Documentation

+ https://wiki.yoctoproject.org/wiki/Yocto_BSP_Tools_Documentation

* yocto-bsp gemu BSP Creation Walk-through

+ https://wiki.yoctoproject.org/wiki/Transcript: _Using_the Yocto BSP_tools to create_a gemu_BSP

* yocto-kernel Patch and Config Item Walk-through

+ https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_manage_kernel_patches_and_config_items

* Yocto-bsp meta-intel BSP Creation Walk-through

+ https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_create_a_meta-intel_BSP

* Yocto Third Party BSP Release Process

+ https://wiki.yoctoproject.org/wiki/Third_Party BSP_Release_Process

* yocto-testmod.patch and yocto-testmod.cfg

+ https://wiki.yoctoproject.org/wiki/Yocto BSP_Summit_Presentation

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 37/38

NNNNNNNN
PROJECT

http://www.yoctoproject.org/docs/current/bsp-guide/bsp-guide.html
https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_create_a_qemu_BSP
https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_manage_kernel_patches_and_config_items
https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_create_a_meta-intel_BSP
https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process
http://www.yoctoproject.org/

yocto

PROIJECT

Yocto BSP Summit 2012 www.yoctoproject.org)’OCtO - [JLINUX 38/38

FOUNDATION
PROIJECT

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

