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Agenda

The Yocto BSP Format
- Background and motivation
« Current Yocto BSP format and contents

Kernels

- Available kernel options

- What's been useful for meta-intel
- Some new changes

Yocto BSP and Kernel Tools
- What they are and how they work
- BSP creation and kernel patching/config examples

Questions and Discussion
- What's missing? What else would people like to see, if anything?
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My Background

Joined Intel (and Yocto) in Sept 2010

Author and maintainer of several meta-intel BSPs
Co-author of the current 'Yocto BSP Guide'
Author of the new 'Yocto BSP Tools'

Previously worked in the kernel mainly on tracing

- Author of kernel/relay.c (relayfs), perf scripting interface
and Perl/Python bindings, perf 'live mode’, kernel event
filters (kernel/trace/trace_events filter.c)

- Major contributor to blktrace, LTT, and systemtap
* Created systemtap, blktrace, sysprof recipes
Other odds and ends related to BSPs and tracing
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Yocto BSP Format

 What is a Yocto BSP?

* Logically speaking, a Yocto BSP is:
- A bitbake layer enabling a specific machine or machines

- Contains hardware-specific components only

- Exists as a single independent directory of metadata

- Can be directly tar'ed, distributed, and built
- Can be independently maintained inside an external repository

- This is what developers see
* When packaged and distributed, a BSP is:

- Binary part: deployed binaries from the build, for example, a runnable
Linux image which can be booted on the hardware

- Source part: the set of recipes and other metadata that were used to
generate the bundled binaries

- This is what we make available on the 'Yocto BSP Downloads' page
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Yocto BSP Format (Why?)

* Why do we need a BSP format?

* The main reason is packaging:

- We want to be able to point users to a tarball for BSP X
- At 'Yocto | Download | Board Support Package (BSP) Downloads'

- Everything needed to build the BSP is in the tarball
- Minus of course the distro metadata, build system, toolchain, etc

- And nothing unrelated to the BSP is in the tarball
* Like other BSPs

* Also the standard reasons:
- Consistency
- Familiarity
- Standardization
 Collaboration
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'Source' Part of a Yocto BSP

Machine configuration
- Metadata defining architecture-specific tuning and options
- Bootloader configuration
Kernel configuration
- Patches against a Linux kernel version
- Kernel config options
Device firmware
Supporting user space
- Hardware-specific applications
- Additional vertical use-specific applications
Toolchain and build system not part of BSP
- Defined in other layers
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Binary part of a Yocto BSP

Provided under <meta-bsp>/binary

Complete bootable disk image

 Or whatever build artifacts are needed to boot on
hardware

A README for how to boot the image
- Part of the README in the top-level of the BSP directory
Functionality may be limited

- You may not want the binaries to be redistributed

- In other words, you're not creating a distro, just a test image
- For example, a single terminal or time-limited kernel
Should allow a developer to see if the board
comes up

- Typically both a minimal and a graphical image are
bundled
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A Brief History of the BSP Format

- Details and examples are available in the 'Yocto BSP
Developer's Guide'

- Before Yocto the Guide was part of the 'Poky Handbook'

- The BSP section first appeared in the Poky 'green' release (Poky 3.3, July
2010)

- The format has evolved over time
« Historically the layout has mirrored the structure of Poky

- Both the current format and Guide have been around since
'‘bernard’' (Poky 5.0/Yocto 1.0, March 2011)

- Made to match the current Poky/Yocto layout

- At that point, there was one meta-intel BSP, meta-emenlow

. It was moved out of Poky and into a separate meta-intel repo
- And it was updated to use the new BSP Format

- Since then all the meta-intel BSPs have followed the format
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BSP file system layout (laverne (Poky 4.0), Oct 2010)

meta-bsp/

meta-bsp/binary/zImage
meta-bsp/binary/poky-image-minimal.directdisk
meta-bsp/conf/layer.conf

meta-bsp/conf/machine/*.conf
meta-bsp/conf/machine/include/tune-*.1inc
meta-bsp/packages/bootloader/bootloader 0.1.bb
meta-bsp/packages/linux/linux-bsp-2.6.50/*.patch
meta-bsp/packages/linux/linux-bsp-2.6.50/defconfig-bsp
meta-bsp/packages/linux/linux-bsp 2.6.50.bb
meta-bsp/packages/modem/modem-driver 0.1.bb
meta-bsp/packages/modem/modem-daemon 0.1.bb
meta-bsp/packages/image-creator/image-creator-native 0.1.bb
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BSP file system layout (edison (Poky 6.0/Yocto 1.1), Oct 2011)

meta-crownbay/COPYING.MIT

meta-crownbay/README

meta-crownbay/README. sources

meta-crownbay/binary

meta-crownbay/conf/layer.conf

meta-crownbay/conf/machine/crownbay.conf
meta-crownbay/conf/machine/crownbay-noemgd.conf
meta-crownbay/recipes-bsp/formfactor/formfactor _0.0.bbappend
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay/machconfig
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/
meta-crownbay/recipes-bsp/formfactor/formfactor/crownbay-noemgd/machconfig
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config 0.1.bbappend
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay/xorg.conf
meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-noemgd/

meta-crownbay/recipes-graphics/xorg-xserver/xserver-xf86-config/crownbay-
noemgd/xorg.conf

meta-crownbay/recipes-kernel/linux/linux-yocto-rt_3.0.bbappend
meta-crownbay/recipes-kernel/linux/linux-yocto 2.6.37.bbappend
meta-crownbay/recipes-kernel/linux/linux-yocto 3.0.bbappend
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BSP Components

License file(s):

- meta-<bsp name>/<bsp license file>

- Examples: COPYING.MIT, COPYING (GPLv2)

README file

- meta-<bsp_name>/README

- How to build and boot the BSP, hardware/software details
README.sources file (for packaged BSPs)

- meta-<bsp name>/README.sources

- Location of the sources that generated the bundled image(s)
Pre-built binaries (for packaged BSPs)

- meta-<bsp name>/binary/<bootable images>

- Bootable target kernel/rootfs, typically minimal and sato
Layer configuration file

- meta-<bsp _name>/conf/layer.conf

- Defines the BSP as a Yocto layer
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BSP Components (cont'd)

Machine configuration file(s)
- meta-<bsp_name=>/conf/machine/*.conf

- Machine-specific parameters: kernel choice, machine and kernel
features, bootloader info, image format info, compiler tuning options

Recipe files and recipe extensions (.bb and .bbappends)
- meta-<bsp name>/recipes-bsp/*

- meta-<bsp name>/recipes-core/*

- meta-<bsp _name>/recipes-graphics/*

Kernel recipes and extensions (.bb and .bbappends)

- meta-<bsp name>/recipes-kernel/linux/linux-x_y*.bb

- meta-<bsp _name>/recipes-kernel/linux/linux-korg.bb

- meta-<bsp_name>/recipes-kernel/linux/linux-yocto*.bbappend
Kernel patches and configuration

- meta-<bsp name>/recipes-kernel/linux/linux-x_y/*.patch | *defconfig
- meta-<bsp name>/recipes-kernel/linux/linux-korg/*.patch | *.cfg

- meta-<bsp name>/recipes-kernel/linux/linux-yocto/*.patch | *.cfg
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BSP Layout

* If you look closely at the BSP Guide, you see:

- Mostly everything is optional

- But what you do include should fit the format
 Advantages of the current format:

- The layout fits naturally with the poky/oe-core layout

- Listing standard files such as README help overall quality

* Including binaries, instructions, and metadata in a
standard way is convenient for new users

- The standard format makes it easier to create BSP tooling
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BSP Release Process

* BSPs can be made available on the Yocto site

« http://www.yoctoproject.org/download/all?keys=&download type=1&download version=
* Here's the process:

 https://wiki.yoctoproject.org/wiki/Third _Party BSP Release Process

- Submit the BSP for review on the Yocto mailing list

- Agree to be the maintainer of the BSP

- Work with Yocto release engineer on release logistics

- The BSP will then be hosted (and announced if desired)

- You can also host it yourself and link from the Yocto page
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Kernels

* The kernel is just another package, right?
- Yes and no
* Yes, it's represented by a recipe just like everything else

- But it's so central and has so many configurable options
that need continual tweaking that it's in fact very different

- Most recipes are 'set it and forget it'
- The kernel is not

- So an accordingly powerful means of interacting with it is
necessary

* Yocto has several kernel options:

- User-defined kernel recipe (kernel.org tarball for example)

- Recipe to 'yoctoize' kernel.org git (or your own git kernel)
- 'Yocto' kernels
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User-defined Kernel Recipe

A Yocto recipe just like any other
« The SRC_URI points to a tarball like any other recipe does
- It's patched via the SRC_URI just like any other recipe is

$ cat linux _3.0.18.bb

DESCRIPTION = "Mainline Linux Kernel"

SECTION = "kernel"

LICENSE = "GPLv2"

LIC FILES CHKSUM = "file://COPYING;md5=d7810fab7487fbh0aad327b76f1lbe7cd7"

inherit kernel

SRC_URI = "${KERNELORG_MIRROR}/linux/kernel/v3.0/linux-$
{PV}.tar.bz2;name=kernel \

file://defconfig "
SRC_URI += "file://yocto-testmod.patch"

SRC URI[kernel.md5sum] = "67252770d7009eabe8bac7c26e074f9d"
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User-defined Kernel Recipe (cont'd)

* Suppose we have a patch and couple config items
- drivers/misc/yocto-testmod.patch
+ A test module that prints a silly message on module_init()
« A couple options to turn it on
- CONFIG_MISC_DEVICES = y and CONFIG_YOCTO TESTMOD =y
* To apply the patch and turn it on:

- We need to add the patch to the SRC_URI
« SRC URI += "file://yocto-testmod.patch"

- And add the kernel options directly to the defconfig
« SRC URI += "file://defconfig"

* 'config fragments' not available
- defconfig is a simple list of config items

- May be difficult to separate what was configured
automatically by kbuild versus what was set by a user
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'Yoctoized' Arbitrary Kernel Recipe

* linux-korg.bb is a kernel recipe in poky-extras
- It's not officially supported (but will be, discussed later)

- All the yocto-specific variables have been removed

$ cat poky-extras/meta-kernel-dev/recipes-kernel/linux/linux-korg.bb

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

KMACHINE = "yocto/standard/auto-bsp"
YOCTO KERNEL_EXTERNAL_BRANCH ?= "yocto/standard/auto-bsp"

KBRANCH = ${KMACHINE}
KMETA = meta

SRC_URI = "git:///home/kernellab/labl/linux;protocol=file;nocheckout=1"

SRC_URI += " file://defconfig file://yocto-testmod.patch \
file://yocto-testmod.cfg"

SRCREV=${AUTOREV}

LINUX_VERSION_EXTENSION ?= "-yoctized-${LINUX_KERNEL_TYPE}"
# Functionality flags

KERNEL_REVISION CHECKING=

YOCTO KERNEL_META_DATA=

require recipes-kernel/linux/linux-tools.inc
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'Yoctoized' Arbitrary Kernel Recipe (cont'd)

linux-korg.bb 'yoctoizes' any arbitrary kernel

- Defaults to Linus' git tree:
- SRC_URI = "git://git.kernel.org/.../torvalds/linux.git;protocol=git"

- But we can point it to any other kernel repo:
« SRC_URI = "git:///nome/kernellab/labl/linux.git;protocol=file"

It can be customized via the SRC_URI

- SRC_URI += "file://defconfig file://yocto-testmod.patch \
file://yocto-testmod.cfg”

We can use 'config fragments'

- yocto-testmod.cfg adds CONFIG_MISC DEVICES and
CONFIG_YOCTO_TESTMOD

We can create and use 'kernel features':

- Config fragments and kernel patches in one
- KERNEL FEATURES append = “features/yocto-testmod”

 Enables Yocto 'kernel tooling' for any git kernel
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linux-yocto 3.2.bb

$ cat meta/recipes-kernel/linux/linux-yocto_3.2.bb

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

KMACHINE = "common-pc"
KMACHINE_gemux86 = 'common-pc"

KBRANCH = "standard/default/base"
KBRANCH_qemux86 = "standard/default/common-pc/base"

SRCREV_machine_qemuppc ?= "74364f1062a219eb242d7cb300a404516c297601"
SRCREV_machine ?= "6fl64aedef5aeec2bef40alb936aclfIhb9db46ba"
SRCREV_meta ?= "8295227f068f78ec3c433529e4012a38773a88c9"

SRC_URI = "git://git.yoctoproject.org/linux-yocto-
3.2;protocol=git;bareclone=1;branch=${KBRANCH},meta; name=machine,meta"

KERNEL_FEATURES="features/netfilter"
KERNEL_FEATURES_append=" features/taskstats"
KERNEL _FEATURES_ append gemux86=" cfg/sound"

require linux-tools.inc
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Yocto Kernel Recipe (cont'd)

* A 'Yocto' kernel is just a kernel.org kernel
- Inside a repo with other branches

- The starting point is a kernel.org kernel snapshot
- This is the 'master' branch - it's a snapshot and never changes

« Other branches inherit this branch and add commits

- yocto/base inherits 'master
- All other branches normally inherit this
- This is where 'stable' is merged or anything global like security
- yocto/standard/base inherits yocto/base
- This adds really common stuff all BSPs normally want
- It also inherits everything from yocto/base i.e stable, security
- yocto/standard/common-pc inherits yocto/standard/base
- This adds really common stuff all ‘common pc's' normally want
- It also inherits all of yocto/standard/base (and in turn yocto/base)

- Finally, your BSP branch can inherit from any of the above
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Yocto Kernel Recipe (cont'd)

* Inherited branches get all updates for free
- Any BSP based on a Yocto kernel automatically gets stable
updates for instance
- The 'meta’' branch represents configuration

- Groupings of common config settings as 'fragments’

- These can be added as .cfg files to the kernel SRC_URI
- Groupings of common config/patches as 'features’

- These can be added via recipe-space KERNEL FEATURE appends

- See meta/kernel-cache/features and ../cfg for the available list
- This allows these settings to be used as a group between BSPs

and allows them to be independently added

- Each BSP also has a specific starting configuration in meta

- See meta/kernel-cache/bsp/<bsp-name>/<bsp>-<ktype>.scc

- The tools find the .scc that matches MACHINE/KTYPE/parent branch

- That starts the process of including the configs inherited up the chain

- Also a place to hard-code features and config fragments, avoiding SRC_URI
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Yocto Kernel Branches and Updates

Branch

master

meta

yocto/base

yocto/eg20t

yocto/emgd

yocto/emgd-1.10

yocto/gmas00

yocto/pvr

yocto/standard/arm-versatile-926e]s

yocto/standard/base

yocto/standard/beagleboard

yocto/standard/cedartrail

yocto/standard/common-pc-64/base

yocto/standard/common-pc-64/jasperforest

yocto/standard/commaon-pc-64/romley

yocto/standard/common-pc-64/sugarbay

yocto/standard/common-pc/atom-pc

yocto/standard/commaon-pc/base

yocto/standard/crownbay

yocto/standard/emenlow

yocto/standard/fishriver

yocto/standard/fri2

yocto/standard/fsl-mpc8315e-rdb

yocto/standard/mti-malta32-be

yocto/standard/mti-malta32-le
octo/standard/pandaboard

Yocto BSP Summit 2012

Commit message

Merge git://git.kernel.org/pub/scm/linux/kemel/git/davem/sparc

meta: bumping kver to v3.0.24

Merge commit 'v3.0.24" into yocto/base

WR Linux baseline

yocto/emgd: 3.0 fixes

yocto/emgd: initial build fixups

WR Linux baseline

yocto/pvr: add hdmi/acpi definitions

Merge branch ‘yocto/standard/base’ into yocto/standard/arm-versatile-926ejs
Merge branch ‘yocto/base’ into yocto/standard/base

Merge branch ‘yocto/standard/base’ into yocto/standard/beagleboard

Merge branch 'yocto/standard/base’ into yocto/standard/cedartrail

Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc-64/base
Merge branch 'yocto/standard/base’ into yocto/standard/common-pc-64/jasperforest
Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc-64/romley
Merge branch 'yocto/standard/base’ into yocto/standard/common-pc-64/sugarbay
Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc/atom-pc
Merge branch ‘yocto/standard/base’ into yocto/standard/common-pc/base
Merge branch ‘yocto/standard/base’ into yocto/standard/crownbay

Merge branch 'yocto/standard/base’ into yocto/standard/emenlow

Merge branch ‘yocto/standard/base’ into yocto/standard/fishriver

Merge branch ‘yocto/standard/base’ into yocto/standard/fri2

Merge branch ‘yocto/standard/base’ into yocto/standard/fsl-mpc8315e-rdb
Merge branch 'yocto/standard/base’ into yocto/standard/mti-malta32-be

Merge branch ‘yocto/standard/base’ into yocto/standard/mti-malta32-le
v3.0.24 -> pandaboard merge fixup
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Some new Yocto kernel Changes

New linux-yocto-custom.bb recipe
- An easy-to-use entry point for taking advantage of Yocto kernel tooling
- Provides a Yocto-jargon-free mechanism to use your own kernel
- Well-documented
Ability to use an 'externalsrc' kernel
. Point the kernel recipe to an existing local kernel tree
- The build system will compile and deploy it but 'keep its hands off' otherwise
- Allows you to do kernel development 'the old fashioned way"
‘'master’ is the default when creating new BSPs using linux-yocto
- The 'master' branch will point to the current 'stable’ Linux kernel
- SO0 when you create a new BSP, you're simply basing on current 'stable’
. You'll have to opt-in to base on Yocto branches like 'standard/base’
General branch cleanup
- 'meta’' no longer has confusing upstream kernel commits
Tool to generate patchset from git branches
- To make it easier to see changes in patch form
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The new 'Yoctoized' Arbitrary Kernel Recipe

» linux-yocto-custom.bb
- Similar to linux-korg.bb but an official recipe
- All the Yocto-specific variables have been removed
- Defaults to the kernel.org kernel (so replaces linux-korg.bb)
- Defaults to arch defconfig if no defconfig specified

$ cat poky-extras/meta-kernel-dev/recipes-kernel/linux-yocto-custom.bb

inherit kernel
require recipes-kernel/linux/linux-yocto.inc

# point this to the git repository of choice
SRC_URI = "git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git;protocol=git;nocheckout=1"

SRCREV="${AUTOREV}"
LINUX_VERSION ?= "3.3"

LINUX_VERSION_EXTENSION = "-custom"
PR = "roO"
PV = "${LINUX_VERSION}+git${SRCPV}"

COMPATIBLE_MACHINE = "(gemuarm]|gemux86|qemuppc|qemumips |qemux86-64)"

require recipes-kernel/linux/linux-tools.inc
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The new 'Yoctoized' Arbitrary Kernel Recipe

- Select the custom kernel as the BSP's kernel
- PREFERRED_PROVIDER virtual/kernel = "linux-yocto-custom"
. Customize it via .bbappend
- Point to your own kernel repo
- Add defconfig or config fragments or kernel features
- Enables any git-based kernel repo to be the upstream kernel
- Use your own repo but gain ability to use fragments and features
- Work towards something that could be sent to linux-yocto
- Or just as a local collection of features and metadata in your own repo

$ cat meta-mybsp/recipes-kernel/linux/linux-yocto-custom.bbappend
SRC_URI = "git://myrepo.github.org/linux.git;protocol=git;nocheckout=1"
SRC_URI += " file://defconfig \

file://yocto-testmod.patch \

file://yocto-testmod.cfg"

KERNEL_FEATURES_append=" features/testmod"

SRCREV="c16fa4f2ad19908a47c63d8fa436al1178438c7e7"
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A few examples from meta-intel

- EMGD
- Large kernel patch (5Mb), will never be upstreamed
- Used by many meta-intel BSPs
- We don't want to add this patch to every recipe

- With a 'user-defined' kernel recipe each BSP would duplicate the patch

- With linux-yocto, we don't have to. Instead we can:
« Put the EMGD driver into a topic branch (emgd-1.10)
- Use 'git merge' to merge it into a given BSP

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/crownbay/crownbay-standard.scc

define KMACHINE crownbay
define KTYPE standard
define KARCH 1386

include ktypes/standard
branch crownbay

include features/emgd/emgd-1.10.scc
git merge emgd-1.10

include crownbay.scc
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A few examples from meta-intel

- Intel power settings
- Most Intel BSPs share a bunch of common power settings
. It's very convenient to have them visible as a group

- Any BSP that wants to use them simply includes them:
« include features/power/intel.scc (includes intel.cfg)

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/features/power/intel.cfg

# use the native intel cpuidle driver for recent Intel processors
CONFIG_INTEL_IDLE=y

# cut out the top source of unnecessary wakeups
CONFIG_NO HZ=y

# enable apps to cut down on polling
CONFIG_INOTIFY USER=y

# enable cpu frequency scaling and stats for powertop
# enable power management debugging for tools like powertop
# turn on run-time power management

CONFIG_PM_RUNTIME=y

# allow usb runtime power management
CONFIG_USB_SUSPEND=y
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A few examples from meta-intel

* In general, each BSP is different

- Some BSPs have local groupings they like to keep straight
- Each BSP might have its own set of one-off config settings

« Most BSPs also include some non-hardware features

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/emenlow/emenlow.scc
kconf non-hardware reboot-quirk.cfg

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/emenlow/reboot-quirk.cfg
CONFIG_CMDLINE_BOOL=y
CONFIG_CMDLINE="reboot=pci"

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/jasperforest/jasperforest.cfg
# NUMA support

CONFIG_NUMA=y

CONFIG _X86_64 ACPI_NUMA=y

CONFIG_NODES_SPAN_OTHER_NODES=y

CONFIG_USE_PERCPU_NUMA_NODE_ID=y

CONFIG_ACPI_NUMA=y

$ cat linux-yocto-3.2/meta/cfg/kernel-cache/bsp/fri2/fri2-standard.scc
include features/latencytop/latencytop.scc

include features/profiling/profiling.scc

include cfg/efi-ext.scc
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Yocto BSP Tools

« A new set of tools to help users:
- Start a new BSP
- Manage kernel patches and config options

- 'yocto-bsp' creates an initial Yocto BSP
- Creates an initial buildable image that may or may not boot
- Just a starting point, ultimately the user must make it work
- With a standardized BSP format, tooling is easier

- 'yocto-kernel' allows users to add and remove patches
and config items from the command line

- Lots of context required to deal directly with linux-yocto metadata
- Managing patches and .cfg items is tedious and error-prone
- Dealing with multiple branches adds to the confusion

- 'yocto-kernel' abstracts the details with a friendly guided interface
- Users never have to know anything about the internals of the kernel recipe
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Create a BSP using 'yocto-bsp'

trz@elmorro: /usr/local/dev/Yocto$ yocto-bsp create myintelbsp x86 64

Would you like to use the default (3.2) kernel? (y/n) [default: y]

Do you need a new machine branch for this BSP (the alternative is to re-use an existing
branch)? [y/n] [default: y]

Getting branches from remote repo git://git.yoctoproject.org/linux-yocto-3.2...

Please choose a machine branch to base this BSP on: [default: standard/default/common-pc-
64]

3) standard/default/arm-versatile-926ejs

4) standard/default/base

8) standard/default/common-pc-64/jasperforest
17) standard/default/fsl-mpc8315e-rdb

20) standard/default/preempt-rt

Do you need SMP support? (y/n) [default: y]

Do you need support for X? (y/n) [default: y]

Please select an xserver for this machine: [default: xserver_ 1915]
1) VESA xserver support

2) 1915 xserver support

Does your BSP have a touchscreen? (y/n) [default: n]
Does your BSP have a keyboard? (y/n) [default: y]

New x86 64 BSP created in meta-myintelbsp
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yocto-bsp

- yocto-bsp and yocto-kernel are Python scripts
- They live under top-level yocto repo scripts/ dir
- The main implementation is under scripts/lib/bsp
- BSP template files live under scripts/lib/bsp/substrate/target/arch/XXX
- There's a subdirectory for each Yocto arch, plus 'common' and ‘gemu’

$ find scripts

scripts/yocto-bsp

scripts/yocto-kernel

scripts/lib/bsp/engine.py
scripts/lib/bsp/substrate/target/arch/common/README
scripts/lib/bsp/substrate/target/arch/common/conf/layer.conf

scripts/lib/bsp/substrate/target/arch/qemu/recipes-kernel/linux/files/{{=machine}}-
standard.scc

scripts/lib/bsp/substrate/target/arch/arm/conf/machine/{{=machine}}.conf
scripts/lib/bsp/substrate/target/arch/powerpc/recipes-kernel/linux/{{ if

kernel choice == "linux-yocto 3.2": }} linux-yocto 3.2.bbappend
scripts/lib/bsp/substrate/target/arch/i386/recipes-graphics/xorg-xserver/xserver-
xf86-config/{{=machine}}/{{ if xserver_choice == "xserver i915": }} xorg.conf
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Yocto-bsp (cont'd)

. Each file in 'substrate/target/arch/*' is a template file

- The files are copied into the target BSP
- Tags of the form {{=var}} are replaced by that variable
- Conditional inclusion, looping, etc are accomplished by in-line Python inside {{ tags }}

. yocto-bsp creates a BSP-generating Python program that when executed
writes the BSP files with variable substitution and logic

- Tags of the form {{ input ... }} generate user input elements

$ cat scripts/lib/bsp/substrate/target/arch/i386/conf/machine/{{=machine}}.conf

#@TYPE: Machine
#@NAME: {{=machine}}

#@DESCRIPTION: Machine configuration for {{=machine}} systems

{{ preferred_kernel version = kernel choice.split(' ')[1] }}
PREFERRED VERSION {{=preferred kernel}} ?= "{{=preferred_kernel version}}%"

{{ input type:"boolean" name:"xserver" prio:"50" msg:"Do you need support for X?
(Y/n)" default:"y" }}

{{ if xserver == "y": }}
XSERVER ?= "${XSERVER IA32 BASE} ${XSERVER IA32 EXT}"
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Mod the kernel with 'yocto-kernel’

$ yocto-kernel patch add mygemuarm /home/trz/newpatches/yocto-testmod.patch
Added patches:
yocto-testmod.patch

$ yocto-kernel config add myqemuarm CONFIG_MISC DEVICES=y
Added items:
CONFIG_MISC DEVICES=y

$ yocto-kernel patch rm mygemuarm
Specify the patches to remove:

1) yocto-testmod.patch

1
Removed patches:
yocto-testmod.patch

$ yocto-kernel config rm myqemuarm
Specify the kernel config items to remove:
1) CONFIG_MISC_DEVICES=y

2) CONFIG_YOCTO TESTMOD=y

1
Removed items:
CONFIG_MISC_DEVICES=y
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yocto-kernel

 Everything yocto-kernel does is visible in the
SRC_URI of the BSP's kernel recipe .bbappend

- The items will appear either directly in the SRC _URI or in a file
named in recipes-kernel/linux/files/

$ cat meta-foo/recipes-kernel/linux/linux-yocto 3.2.bbappend

SRC_URI += " \
file://foo-standard.scc \
file://foo.scc \
file://foo.cfg \
file://user-config.cfg \
file://user-patches.scc \
file://yocto-testmod.patch \

$ cat meta-foo/recipes-kernel/linux/files/user-config.cfg

CONFIG_MISC DEVICES=y
CONFIG_YOCTO TESTMOD=y
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Discussion
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Resources

* The Yocto Project BSP Developer's Guide

+  http://www.yoctoproject.org/docs/current/bsp-guide/bsp-guide.html

* The Yocto Project BSP Tools Documentation

+  https://wiki.yoctoproject.org/wiki/Yocto_BSP_Tools_Documentation

* yocto-bsp gemu BSP Creation Walk-through

+  https://wiki.yoctoproject.org/wiki/Transcript: _Using_the Yocto BSP_tools to create_a gemu_BSP

* yocto-kernel Patch and Config Item Walk-through

+  https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_manage_kernel_patches_and_config_items

* Yocto-bsp meta-intel BSP Creation Walk-through

+  https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_create_a_meta-intel_BSP

* Yocto Third Party BSP Release Process

+ https://wiki.yoctoproject.org/wiki/Third_Party BSP_Release_Process

* yocto-testmod.patch and yocto-testmod.cfg

+  https://wiki.yoctoproject.org/wiki/Yocto BSP_Summit_Presentation
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https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_create_a_qemu_BSP
https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_manage_kernel_patches_and_config_items
https://wiki.yoctoproject.org/wiki/Transcript:_Using_the_Yocto_BSP_tools_to_create_a_meta-intel_BSP
https://wiki.yoctoproject.org/wiki/Third_Party_BSP_Release_Process
http://www.yoctoproject.org/

yocto
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