
28 Apr 2015 1 of 11

Image customisation in Toaster
High level design

28 Apr 2015 2 of 11

Image customisation in Toaster
Table of contents

11Additional features and questions

94. Add / Remove packages

83. Select your reference image recipe

2. 'Give your image recipe a name' dialog 7

1. 'My image recipes' section 6

What do we need to implement this web interface 5

The web interface could look like this 4

What is this document 3

28 Apr 2015 3 of 11

What is this document

This document is the outcome of preliminary design
discussions about how to handle image customisation in
Toaster.

By image customisation we mean the ability to create a
customised image recipe by specifying the list of packages
it will install.

The discussions aimed to provide the following:

▪ A possible high level design for the image
customisation web interface

▪ A general idea of how such web interface could be
implemented during the 1.9 release of the Yocto
Project

Image customisation in Toaster
What is this document

28 Apr 2015 4 of 11

1. The "My image recipes" section

In your Toaster projects, you will find a "My image recipes" section, where you will be able
to create, build and manage your customised image recipes.

2. Give your image a name

The first step when creating your custom image recipe is giving it a name. Once you do
that, Toaster saves your new image recipe. This means you don't need to finish your
image recipe in a single go: you can drop it and go back to it at any time.

3. Select your reference image recipe

You don't start your image recipes from scratch: that's just too hard. Instead, you select
an existing image recipe that serves as a starting point. This image recipe will provide a
list of default packages, that you can them add to (or remove from) as needed.

4. Add / remove packages

Toaster will show you all the packages it knows about, so that you can select the ones you
want to add to your image recipe. You can also remove packages from the default list.
Once you are done, you can build your image recipe, or download the .bb file to integrate
it into a custom layer.

5. Once you are done

Your image recipe becomes available in the "My image recipes" section. You can build it,
download root file system files, download the .bb file or edit its installed package list at
any time.

Image customisation in Toaster
The web interface could look like this

28 Apr 2015 5 of 11

▪ We could also start a layer parsing automatically
based on certain events. For example, when a
project is created or when a new layer is added to
the project. For this approach to be feasible, the
layer parsing process must not be modal (i.e. must
not prevent me from interacting with Toaster while
running), and users must be able to stop it. When a
layer parsing is in progress, the pages within the
customisation process must include a notification
informing users that a layer parse is happening.

5. Which layer custom image recipes go
into

We agreed that a viable solution for the 1.9 release should
not involve pushing to any Git repositories, and so we
concluded:

▪ That the easiest way to handle this is keeping the
image recipes separate from the normal
project builds, at least in appearance.

▪ The above means that each project should have a
"My image recipes" section, separate from where the
normal project builds are configured and
launched. You will only be able to build your custom
image recipes from this "My image recipes" section,
and your custom image recipes will not appear as
suggestions in the autocomplete functionality of our
build forms.

▪ If you want to integrate a custom image recipe with
the normal project builds, you will need to download
the custom image recipe bb file (we will provide a
download option), add the file to a custom layer, and
import the layer into Toaster

▪ Custom image recipe builds will still show in the
Toaster build history (in both the 'all builds' page and
the 'project builds' page).

The following pages list some of the design requirements
for the customisation interface.

The improvements compared to Hob

Hob forced users through a once-off, linear customisation
process that involved 2 steps: selecting first a set of
recipes, then a set of packages produced by the selected
recipes. This 2-stage customisation also involved a lot of
waiting:

1. For layers to be parsed before you could select recipes

2. For selected recipes to be built before you could select
packages

The workflow outlined in the previous page uses the
information provided by layer sources and the project
build history to eliminate the recipe selection step, and
replaces Hob's "modal" parsing with a background process
that allows users to complete the image customisation on
the basis of the information available. Users can also
choose to wait until parsing completes, and even build the
image they select as a starting point if they require more
accurate information than the parsing process can
provide.

What do we need to implement this web
interface

1. We need to be able to tell image recipes apart from
software recipes and package groups. We have 2
features opened in Bugzilla to provide this
functionality: 7575 (for theToaster work) and
7571 (for changes to the OpenEmbedded
Metadata Index).

2. We need to be able to "guess" which packages an
image recipe produces before building it. This can
be done by parsing the layers added to a Toaster
project.

3. We need to be able to list all the packages that have
been built within a certain project. This is where
Toaster really delivers compared to Hob, since
Toaster stores the history of all builds within a
project, and therefore knows about all the packages
that have been built previously as part of it.

4. We need to be able to remember the state of a
custom image recipe I am creating, so that I can
return to the customisation process and pick up
where I left off.

5. We need to handle the issue of which layer custom
image recipes go into.

Of these 5 requirements, the trickiest are 2 and 5.

2. How do we handle the layer parsing
process

▪ Toaster will parse the project layers (not all layers
Toaster knows about, only the layers added to the
project at the time when the parsing starts)

▪ The information we display to users during the
customisation process can have different degrees of
accuracy, depending on the layers that have been
parsed and the project build history. Users should
be able to parse the project layers, or to build their
selected image recipe, if they want a higher degree
of information accuracy.

▪ Users should be able to start a parse from the
following pages:

⁃ The layers section in the project page, when
a new layer is added to the project (this
includes both layer index layers and
imported layers)

⁃ The layer details page
⁃ The 'select an image recipe' page in the

image customisation process

▪ We might also consider providing a 'start parse'
option from:

⁃ The 'new project' page
⁃ The 'import layer' page

Image customisation in Toaster
What do we need to implement this web interface

28 Apr 2015 6 of 11

1. 'My image recipes' section in the
project page

▪ We need 2 states for this page: an 'empty' one (when
no custom image recipes exist for the project), and a
'populated' one (when one or more image recipes
exist for the project)

▪ We need to provide access to the build information
from this section. The information coming
from custom image recipe builds will be presented in
pretty much the same way as any other build, and
will be listed with all other builds in the 'all builds'
page and the 'project builds' page.

▪ The information about these builds will need
to indicate if any additional packages where installed
due to dependencies Toaster didn't know about
during the customisation process. This should
probably show as some kind of notification in the
image dashboard, and in the table of packages
installed.

We need an empty state

And a populated state

Image customisation in Toaster
1. 'My image recipes' section

28 Apr 2015 7 of 11

2. 'Give your image recipe a name' dialog

▪ This step is modal.

▪ Once you have given your image recipe a name, we
save it in the 'my image recipes' section, so you can
leave the process and return to it at any time.

Image customisation in Toaster
2. 'Give your image recipe a name' dialog

28 Apr 2015 8 of 11

3. Select your reference image recipe

The information in this page can have different degrees of
accuracy:

▪ The page could be completely empty. This is the
worst case scenario. As far as I can tell, it can only
happen if Toaster does not have any layer sources
configured or, if it does, when the lsupdates
command fails to fetch the layer information from
the layer sources. If the page is completely empty, we
would need to check if there are any imported layers
in the project. If there are not, we should have
an empty state asking people to either configure a
layer source or import a layer, as we currently we do
in, for example, the project page. If there are
imported layers in the project, we should ask users
to run a "first-time" parse.

▪ The page only has information coming from layer
source data (no information coming from parsing
or builds). When the layer index is set up as a layer
source, Toaster should be able to show a list of image
recipes to select based on the information coming
from the layer index. Information such as number of
packages installed and total package size will be
empty, and as above users should be asked to run a
"first-time" parse before proceeding, since without
parsing the layers we will know nothing about the
packages installed by any of the image recipes listed.

▪ The page has information from a layer parse (but no
information coming from builds). In this case, we will
have an estimated number of packages installed, but
no total package size. Users should be able to select
one of the image recipes listed and proceed based on
the "estimated" information Toaster has.

▪ The page has information coming from builds: for
those image recipes that have been built within the
project, we will have complete information, including
the number of packages installed and the total
package size.

Users should be able to start a layer parse from this page
at any time.

Image customisation in Toaster
3. Select your reference image recipe

28 Apr 2015 9 of 11

4. Add / remove packages

This page is basically a list of all the packages Toaster
knows about for the project you are working on. Users will
be able to add / remove packages from this page.

We will also need a 'free text' option, where users can type
the name of a package Toaster might not know about. The
example that came up during the design discussions was
optional kernel modules, for which we can only verify that
the free text pattern matches what's produced by a recipe
(PACKAGES_DYNAMIC). I have no idea what this means,
by the way: just quoting Paul Eggleton here.

The information in this page can also have different
degrees of accuracy.

▪ Information based on layer parse: the number of
packages installed is estimated, and the
package sizes will be missing. When the page is in
this state, users should be able to build the image
recipe at any point to get more accurate information.
The build process should not be modal (i.e. should
not stop me from interacting with Toaster or
continuing the image customisation process based
on the available information).

▪ Information based on builds: we will have an
accurate number of packages installed and we will be
able to show package sizes.

We discussed the possibility of providing a way of setting
the version of a custom image recipe in this page.

We discussed removing any reference to the image
recipe selected as the starting point after selection takes
place. However, Paul Eggleton has brought up that image
recipes might include certain options beyond the package
list that users or vendors might be keen on keeping. This
means that there are 2 possible ways of creating the
custom image recipes:

1. By inheriting the starting point image recipe, and
keeping those extra options

2. By not inheriting the starting point image recipe

Image customisation in Toaster
4. Add / remove packages

28 Apr 2015 10 of 11

In general, Yocto Project's core images will use the option
2, but this is potentially something we could turn into an
option users could select. Although we should proceed
with caution and provide a sane default, since we cannot
assume users will know or understand the difference
between both, and we are not planning to expose those
"options" that will be kept by inheriting the starting point
image recipe.

Handling package dependencies

This page will need to handle dependencies when
adding / removing packages. We should probably reuse
the design we have for handling layer dependencies.

Package dependencies might be compulsory or optional.

Compulsory package dependencies are shown just for
information purposes (you either proceed or not).

Optional package dependencies list the packages
associated with a check box (like layer dependencies do),
that users can uncheck.

All dependencies when adding a package are compulsory.
Removing is more complicated. In a situation where
package A depends on package B, which depends on
package C; and package D also depends on package C

A > B > C
C > D

▪ If I remove B, the dependency is compulsory (A must
go).

▪ If I remove A, I get the option to remove B, which
should be selected by default.

The problem with this approach is that, if I deselect the
option to remove B, that might change the list of packages
shown as being removed. If this proves too complex, we'll
make all dependencies compulsory.

Image customisation in Toaster
4. Add / remove packages (II)

28 Apr 2015 11 of 11

Additional features

A few additional features came up during the discussions,
but we agreed we will not be able to deliver them in the
1.9 release:

• Breaking up package groups. We have not tackled
this issue yet, mainly because we don't think we can
get to it as part of the first version of the image
customisation functionality.

• Breaking package dependencies via configuration
options. If I remember correctly, this is about
breaking RRECOMMENDS, but must be done for
the whole image recipe (cannot be done on a per
package basis).

• Enhance layer removal. Currently, Toaster does not
use layer dependency information when you delete a
layer from the project: you must remove layers one
by one. We could enhance layer removal by asking
users if they want to remove the dependent layers if
no other project layers depend on them.

A question we forgot to ask

What happens to my custom image recipes if I change the
project release?

Image customisation in Toaster
Additional features and questions

