
Yocto Project Summit – Lyon

Day 2 : Friday 1 November 2019

Marco Cavallini, Leon Anavi, Jaewon Lee, Bernardo A. Rodrigues,

Manjukumar Harthikote Matha, Chandana Kalluri, Tim Orling, David Reyna

Presenter Slides:

https://wiki.yoctoproject.org/wiki/YP_Summit_Lyon_2019

2

Agenda – Yocto Project Summit - Day 2

9:00- 9:45 Strengthen your Yocto deployments with Autobuilder2

CI tool

9:50- 10:35 Working with NVIDIA Tegra BSP and Supporting Latest

CUDA Versions

10:40-10:50 Morning Break

10:55-11:40 Sstate-cache Magic!

11:45-12:30 Bringing IOTA Distributed Ledger Technology (DLT) into

Yocto/OpenEmbedded

12:35-1:20 Lunch

1:25- 2:55 Class: Devtool hands-on Seminar

3:00- 3:10 Afternoon Break

3:15- 4:45 Class: User Space 2.0 Seminar

https://wiki.yoctoproject.org/wiki/YP_Summit_Lyon_2019

1. Strengthen your Yocto deployments with

Autobuilder2 CI tool

Marco Cavallini, KOAN
https://koansoftware.com

4

Who am I

• Founded KOAN on 1996

• Working with software for industrial automation until 1999

• Linux embedded devloper since 2000

• Openembedded board member since 2009

• Yocto Project participant since 2010

• Yocto Project Advocate since 2012

• Software development and consulting

• BSP creation

• Device driver kernel development

• Open embedded and Yocto Project training

5

Agenda

• What is a Continuous Integration (CI) system

• Autobuilder2 History

• Buildbot, the foundations

• Buildbot mechanics

• Buildbot installation

• Autobuilder2 installation

• Autobuilder2 configuration

• Autobuilder2 usage (as-is)

• Autobuilder2 customization

• Autobuilder2 usage for CI on a single machine

6

What is Autobuilder

• Autobuilder is a project based on Buildbot

• Buildbot is a Python open-source application used to

build, test, and release a wide variety of software.

• Autobuilder and Buildbot are licensed under GPLv2

7

CI overview

‘master’

CONTROLLER

• Typical CI on a single machine

‘slave’

WORKER

‘slave’

WORKER

‘slave’

WORKER

8

CI overview

‘master’

CONTROLLER

• Typical CI on a distributed system

‘slave’

WORKER

‘slave’

WORKER

‘slave’

WORKER

9

Our goal

‘master’

CONTROLLER

• Speed Yocto builds by populating premirrors with

Autobuilder2

‘slave’

WORKER

SSTATE

image

DL_DIR bitbak

e

10

Autobuilder overview

yocto-autobuilder2

yocto-autobuilder-helper

11

Autobuilder history *

• Creation of Autobuilder
• The autobuilder started life as something OpenedHand used

for testing Poky linux.

• Yocto-autobuilder
• It became "yocto-autobuilder" under Beth's stewardship in

December 2012 when it was totally re-implemented.

• Autobuilder2
• In Feburary 2018 it was rewritten again, in particular to move

from the long obsolete "buildbot eight" codebase to the

"buildbot nine" one but also to fix many long running issues

and get back to using an upstream codebase.

* Thanks to Richard Purdie who provided these information

12

People behind Autobuilder *

• Project Autobuilder
• Richard Purdie, Elizabeth Flanagan, Joshua Lock as well as

contributions from Tracy Graydon, Anibal Limón and Bill

Randle.

• Project Autobuilder2
• Richard Purdie and Joshua Lock.

• Michael Halstead is the project sysadmin who maintains the

infrastructure it all runs on top of.

* Thanks to Richard Purdie who provided these information

13

Buildbot

14

Buildbot basics

• Buildbot is a job scheduling system
• it queues jobs, executes the jobs when the required resources

are available, and reports the results

15

Buildbot basics

• Workers are typically run on separate machines

16

Buildbot basics

17

What happens inside the master

builder n

worker 1 worker n worker 2 . . .

↓cmds ↑results

VCS

repos
change source

scheduler

direct commands

Buildfactory

- step 1

- step 2

.

.

.

reporter

Build master

checkout

builder 2

builder 1

. . .

starts builder

scheduled events

* artwork by Mauro Salvini

18

Buildbot installation

• On a native system
• Probably the fastest solution

• In a Python sandbox
• Isolates it from the host system

• Using pip

• In a Docker container
• Isolates it from the host system

https://docs.buildbot.net/2.4.

0/full.html

19

Buildbot installation (in a Python sandbox) [1/3]

• Create a sandbox

• Install master

• Install worker

 mkdir abot-sandbox

 cd abot-sandbox

 python3 -m venv sandbox

 source sandbox/bin/activate

 pip install --upgrade pip

 pip install 'buildbot[bundle]'

 pip install --upgrade pip

 pip install buildbot-worker

20

Buildbot installation (in a Python sandbox) [2/3]

• Create the master

• Create the worker

 buildbot create-master master

 mv master/master.cfg.sample master/master.cfg

 pip install setuptools-trial

 buildbot-worker create-worker worker localhost example-worker pass

21

Buildbot installation (in a Python sandbox) [3/3]

• Content of the sandbox

(sandbox) koan@amonra:~/abot-sandbox$ tree -L 2

.

├── master

│ ├── buildbot.tac

│ ├── master.cfg → c['workers'] = [worker.Worker("example-worker", "pass")] (*)

│ └── state.sqlite

├── sandbox

│ ├── bin

│ ├── include

│ ├── lib

│ ├── lib64 -> lib

│ ├── pip-selfcheck.json

│ ├── pyvenv.cfg

│ └── share

└── worker

 ├── buildbot.tac → workername = 'example-worker' (*)

 └── info

ftp://ftp.koansoftware.com/public/opens

ource/buildbot/

(*)

22

Buildbot execution

• Execution of master

• Control of the build system (using your browser)

 buildbot start master

 http://localhost:8010/

23

Buildbot

• To be continued in a dedicated session…

• Now let’s have a look at Autobuilder

24

Autobuilder2

Ab2

Ab2

25

Buildbot vs. Autobuilder2 lexicon
Ab2

Buildbot Autobuilder2

Master Controller

Worker Worker

26

Autobuilder2 installation

• After you created the sandbox

• Create the master and worker directories

• yocto-controller is the directory for master

• --umask sets the proper permissions

• yocto-worker is the directory for worker

• localhost is the network address of the master

• example-worker is the name of the worker

• pass is the password (master.cfg)

Ab2

 buildbot create-master -r yocto-controller

 buildbot-worker create-worker -r /

 --umask=0o22 yocto-worker localhost example-worker pass

27

Autobuilder2 installation

• Clone yocto-autobuilder2

• yoctoabb is the mandatory Autobuilder2 directory name

• Clone yocto-autobuilder-helper

 cd yocto-controller

 git clone https://git.yoctoproject.org/git/yocto-autobuilder2 yoctoabb

 ln -rs yoctoabb/master.cfg master.cfg

 cd ..

 git clone https://git.yoctoproject.org/git/yocto-autobuilder-helper

Ab2

28

Autobuilder2 tree

• Content of the Autobuilder2 sandbox

(sandbox) koan@amonra:~/ab2-sandbox$ tree -L 3

.

├── autobuilder

├── git

├── sandbox

├── yocto-autobuilder-helper

├── yocto-controller

│ └── yoctoabb

│ └── master.cfg

└── yocto-worker

 └── buildbot.tac

Ab2

* Simplified tree list

29

Autobuilder2 installation

• Complete installation instructions

Ab2

http://git.yoctoproject.org/cgit.cgi/yocto-

autobuilder2/tree/README-Guide.md

html

ftp://ftp.koansoftware.com/public/talks/YoctoS

ummit-2019/autobuilder2/Autobuilder2-

README-Guide.pdf

30

Autobuilder2

Autobuilder default configuration

31

Autobuilder2 configuration

• Ab2 default configuration
• The default configuration of Ab2 uses a lot of workers to

generate images for several MACHINES

Ab2

32

Autobuilder2 official website

https://autobuilder.yoctoproject.or

g/typhoon/

33

Autobuilder2 website navigation

34

Autobuilder2 website navigation

35

Autobuilder2 - builds

36

Autobuilder2 - workers

37

Autobuilder2 – worker details

38

Autobuilder2 – build details

39

Autobuilder2 – build details

40

Autobuilder2 – build details

41

Autobuilder2 – build details

42

Autobuilder2

Autobuilder custom ‘lighter’

configuration

43

Autobuilder2 reduced configuration

• Reduce complexity
• The goal is to setup a configuration for an image for a single

MACHINE only

• This will help yo strenghten the deployments thanks to

recurring builds, tipically nightly

Ab2

44

Autobuilder2 reduced configuration

• Files to be modified

.

├── yocto-autobuilder-helper

│ └── config.json

├── yocto-controller

│ └── yoctoabb

│ ├── builders.py

│ ├── config.py

│ ├── master.cfg

│ └── schedulers.py

└── yocto-worker

 └── buildbot.tac

Ab2

45

Autobuilder2 configuration

• In yocto-autobuilder-helper
• Edit yocto-autobuilder-helper/config.json

• In yocto-controller
• Edit yocto-controller/yoctoabb/master.cfg

 "BASE_HOMEDIR" : "/home/koan/ab2-sandbox",

 "BASE_SHAREDDIR" : "${BASE_HOMEDIR}/autobuilder",

 "BASE_PUBLISHDIR" : "${BASE_HOMEDIR}/downloads",

 c['title'] = "KOAN lite Yocto Autobuilder"

 c['titleURL'] = "http://localhost:8010/"

 c['buildbotURL'] = "http://localhost:8010/"

Ab2

46

Autobuilder2 configuration

• In yocto-controller (again)
• Edit yocto-controller/yoctoabb/config.py

• Specify the helper directory

 workers_koan = ["example-worker"]

 workers = workers_koan

 all_workers = workers,

 sharedrepodir = "/home/koan/ab2-sandbox/repos"

 publish_dest = "/home/koan/ab2-sandbox/pub"

Ab2

 repos = {

 "yocto-autobuilder-helper":

 ["file:///home/koan/ab2-sandbox/yocto-autobuilder-helper",

 "master"],

47

Autobuilder2 ‘lite’ customized

http://localhost:8010/

48

Autobuilder2 ‘lite’ customized

49

Autobuilder2 to speed up Yocto build

• Share the artefacts with Yocto
• Edit local.conf

• Share downloads

• Share SSTATE

PREMIRRORS_prepend = "\

 git://.*/.* file:///home/koan/ab2-sandbox/autobuilder/current_sources/ \n \

 ftp://.*/.* file:///home/koan/ab2-sandbox/autobuilder/current_sources/ \n \

 http://.*/.* file:///home/koan/ab2-sandbox/autobuilder/current_sources/ \n \

 https://.*/.* file:///home/koan/ab2-sandbox/autobuilder/current_sources/ \n \

 "

Ab2

SSTATE_MIRRORS = "file://.* \

 file:///home/koan/ab2-sandbox/autobuilder/pub/sstate/PATH"

50

Autobuilder2 to speed up Yocto build

‘master’

CONTROLLER

‘slave’

WORKER

SSTATE

image

DL_DIR bitbak

e

51

Questions?

https://koansoftwa

re.com

https://yoctoproj

ect.org

2. Working with NVIDIA Tegra BSP and

Supporting Latest CUDA Versions

Leon Anavi

53

Download the slides from here:

• https://wiki.yoctoproject.org/wiki/File:Yocto-dev-

summit-leon-anavi-2019.pdf

3. Sstate-cache Magic!

Jaewon Lee

Presented by Mark Hatle

55

Abstract

From-scratch builds, even using server grade machines (with 40+

cores) will take just under an hour to complete. Additionally this

estimate is just for minimal, stripped down images; Bigger images

that bring up more than just core functionality and support things

like web browsers/multimedia would take much longer (on the

order of several hours).

Use of the sstate cache drastically cuts down on build times,

especially for fresh projects. Xilinx makes full use of the sstate

cache to speed up builds for its customers by hosting a

comprehensive sstate cache (for all packages for different types of

architectures) and allowing users to point their builds to this

prebuilt and maintained sstate cache.

56

Abstract

There are different ways of distributing the sstate. When building

an esdk (An extensible software development kit), the sstate of all

non-native components is packaged so that any build using the

esdk will happen in the blink of an eye. However, when building an

sdk from within another sdk, the sstate for the native components

were missing , hence making the sdk build disproportionately long

compared to regular builds.

We introduced a patch into core that allows users to toggle the

inclusion of nativesdk packages into the esdk by correctly

handling sstate cache artifacts themselves as well as the

corresponding signatures that are used to reference if anything

has changed. With this change, a bigger esdk will be built, when

required, that will skip rebuilding native components.

Yocto Project | The Linux Foundation

Agenda

58

Agenda

• What is sstate-cache and how is it used

• Tips and tricks

• How is sstate-cache used in Xilinx

• Upstreamed native sdk patch

Yocto Project | The Linux Foundation

What is sstate-cache and how is it used?

60

What is the sstate-cache?

• All of this and more can be found in the sstate-cache

section of the mega-manual

• https://www.yoctoproject.org/docs/latest/mega-

manual/mega-manual.html#shared-state-cache

https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache
https://www.yoctoproject.org/docs/latest/mega-manual/mega-manual.html#shared-state-cache

61

What is the sstate-cache?

• The sstate-cache allows incremental builds

• Checksums are calculated on a per-task basis to minimize

rebuilding unnecessarily

• If the hash of any task is changed, task will be re-run

• Configuration (local.conf, distro.conf, etc)

• Recipe (.bb / .bbappend / dependency / function)

• Files (src_uri)

• If all inputs remained the same, build artifacts will be copied

from the sstate-cache to the destination

• This task as well all tasks this was dependent on, will be

skipped

62

What is the sstate-cache?

• To illustrate how useful the sstate-cache can be:

• Build, no external sstate-cache: ~1.5 Hours
How long it takes to parse all of the files, execute all of the tasks.

• Re-build with no changes: ~10 sec
How long it takes to check all the hashsums and figure out there’s nothing to do,

parsing is already cached.

• Removing tmp/ and rerunning build: ~1.5 min
How long it takes to restore minimum necessary build artifacts from the sstate-cache,

build image, etc.

Note: this is approximately how long it would take customers to do a build if provided

with a full sstate-cache, and no additional transfer time was required.

63

Sstate-cache details

• Sstate-cache wiring

• The _setscene task is the final wiring needed that will check

if the sstate-cache can be used to skip this task

• Flags: sstate-inputdirs, sstate-outputdirs, sstate-plaindirs,

sstate-lockfile, sstate-lockfile-shared, sstate-interceptfuncs,

sstate-fixmedir

• Example:

 package.bbclass

SSTATETASKS += "do_package"

do_package[cleandirs] = "${PKGDEST} ${PKGDESTWORK}"

do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}

${PKGDESTWORK}"

do_package_setscene[dirs] = "${STAGING_DIR}"

python do_package_setscene () {

 sstate_setscene(d)

}

addtask do_package_setscene

64

Sstate task flags

• sstate-inputdirs – where function places it’s output to

be cached

• sstate-outputdirs – where the output sstate cache

copies to

• sstate-plaindirs – use when input/output is the same

• sstate-lockfile, sstate-lockfile-shared – special locks

• sstate-interceptfuncs – post processing sstate funcs

• sstate-fixmedir – directory to scan “fixme” ops

65

Sstate-cache details (cont)

• sstate-cache is stored under build/sstate-cache

(default but can be changed)

• As an example, In the following:

sstate-cache/01/sstate:sstate:make::4.2.1:r0::3:01397ee06dba53ce572b63b9242fe29c_populate_lic.tgz

• The build artifacts that would be copied into the

cache, then placed into the outputdir:

do_populate_lic[sstate-inputdirs] = ${LICSSTATEDIR}:

./license-destdir/make/generic_GPLv3

./license-destdir/make/recipeinfo

./license-destdir/make/COPYING

./license-destdir/make/generic_LGPLv2

./license-destdir/make/COPYING.LIB

do_populate_lic[sstate-outputdirs] = ${LICENSE_DIRECTORY}

Yocto Project | The Linux Foundation

Tips and Tricks

67

Tips and tricks

• You can point to an external sstate-cache (either on a

server or local host)

SSTATE_MIRRORS ?= "\

file://.* http://someserver.tld/share/sstate/PATH;downloadfilename=PATH \n \

file://.* file:///some/local/dir/sstate/PATH”

• Using SSTATE_MIRRORS is preferred (read only access)

• Using a single shared directory (read write access)

• If unfamiliar with mirroring, note the ‘\n’ and ‘\’!

/some/local/dir/sstate/PATH

68

Tips and tricks

• There are cases where a scratch build is preferred

• Often useful when debugging, or verifying deterministic

builds

• Clean the sstate-cache for individual packages by running:

bitbake $PN –c cleansstate

• To invalidate a specific task and rerun everything starting

from that task (For ex. If you just want to recompile without

rerunning the do_configure task)

 bitbake $PN –C compile (Note the capital –C)

 you will see: “NOTE: Tainting hash to force rebuild of task”

• Since the hash has been tained, output is not shareable!

69

Tips and tricks

• Check differences in sstate-cache

• bitbake-dumpsig “/path to .siginfo file”

• Dump everything that makes up the inputs of the sstate-

cache (all variables, dependencies, hashsums, etc)

• For example:
Variable TARGET_CXXFLAGS value is ${TARGET_CFLAGS}

basehash: 033325ee84d07cd82674a6827c1ea4a7b398da10430f41cffcaa488c4d0b3947

List of dependencies for variable EXTRA_OEMAKE is {'BUILD_CFLAGS', 'BUILD_CC’,

 'BUILD_LDFLAGS', 'BUILD_CPP'}

Hash for dependent task /workspaces/jaewon/CORE/poky/meta/recipes-kernel/linux/linux-

yocto_5.2.bb:do_kernel_configcheck is

36dad4284470c4ca656cfc981630cecbe4afac71a26a26b3ca706381be4f92cc

70

Tips and tricks

• Find out why something rebuilt

• bitbake-diffsigs “/path to first .siginfo file” “/path to second

.siginfo file”

• Example output after rebuilding with comment appended to

compile task:

71

Tips and tricks

• Ignore variables:

• Often there are variables in the hash that don’t actually affect

the output…

• For example:

BB_HASHBASE_WHITELIST_append = “TOPDIR”

PACKAGE_ARCHS[vardepsexclude] = “MACHINE”

• Manually add variables:

• Sometimes there are variables you want to trigger a rebuild..

Often used with vardepsexclude.

• For example:

PACKAGE_ARCHS[vardeps] = “MACHINE”

Yocto Project | The Linux Foundation

How is sstate-cache used at Xilinx

73

How sstate cache is used at Xilinx

• A full image esdk (Extensible SDK) is built on a daily

basis

• The sstate-cache packaged within this esdk is extracted and

synced daily to an internal NFS mount point and tools

internally points builds to this sstate-cache through the

SSTATE_MIRRORS variable.

• For every release, the final full sstate-cache is also synced

http://petalinux.xilinx.com for external use

http://petalinux.xilinx.com/

74

Sstate cache usage stats

0

0.5

1

1.5

2

2.5

3

3.5

4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

July August September October (To-Date)

Xilinx sstate-cache Usage

Hits (Millions) Bandwidth (Terrabytes)

External usage from petalinux.xilinx.com

Yocto Project | The Linux Foundation

Upstreamed native sdk patch

76

Include native sdk in esdk

• By default, native components (tools needed on the

host) are not packaged into the esdk sstate-cache

(originally because an esdk is targeted for a specific

host).

• We introduced a mechanism to enable including

native components so developers could make

changes within an esdk, and package that up again to

distribute by creating another derivative sdk, in a

much shorter time.

77

Include native sdk in esdk

• Users would need to enable the flag, i.e.

SDK_INCLUDE_NATIVESDK = "1“

• And then build the esdk by running:

bitbake $IMAGE_NAME –c populate_sdk_ext

78

Include native sdk in esdk

• The result is a bigger esdk that enables a much

quicker derivative sdk build

• Default:

• Esdk size of ~1G

• Sdk build time of ~20 min

• By enabling SDK_INCLUDE_NATIVESDK

• Esdk size of ~1.4G

• Sdk build time of ~2 min

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0

5

10

15

20

25

sstate-cache w/o sstate-cache

Time (Min) Size (Gigabytes)

4. Bringing IOTA Distributed Ledger

Technology (DLT) into Yocto/OpenEmbedded

Bernardo A. Rodrigues

80

• Philipp Blum

• Developer Advocate (IOTA

Foundation)

• philipp.blum@iota.org

• Bernardo A. Rodrigues

• meta-iota Maintainer

• bernardoaraujor@gmail.com

Presenters

mailto:philipp.blum@iota.org
mailto:bernardoaraujor@gmail.com
mailto:bernardoaraujor@gmail.com

81

Table of Contents

• What is IOTA?

• IOTA Nodes

• meta-iota

• IOTA Ecosystem Development Fund

Yocto Project | The Linux Foundation

What is IOTA?

Context

83

Distributed Ledger Technologies

Blockchain Tangle
(DAG - Directed Acyclic Graph)

84

Tangle (DAG)

Each Vertex represents a transaction

(squares)

Each Edge represents na approval (lines)

85

Zero Fee Transactions

 -$0.01

+$0.01

​

No mining = No fees = Zero

fee micro-transactions

86

IOTA Foundation

• Non-Profit Foundation registered in Berlin

• ~100 employees in 17 countries

• Funded through donations from IOTA Token holders,

Research Grants and Project-based corporate

financial support

87

IOTA Foundation

88

IOTA Foundation: Collaborations & Partnerships

Yocto Project | The Linux Foundation

IOTA Nodes

Pre Coordicide vs Post Coordicide

90

IOTA Nodes

• DLT Node:

• transaction relay

• ledger copy

91

IOTA Nodes

• Ethereum, Bitcoin, etc: Nodes on the Cloud (↑ hw resources)

• IOTA: Nodes on the Edge (↓ hw resources)

https://blog.iota.org/towards-open-collaboration-1926e94514b8

https://blog.iota.org/towards-open-collaboration-1926e94514b8
https://blog.iota.org/towards-open-collaboration-1926e94514b8
https://blog.iota.org/towards-open-collaboration-1926e94514b8
https://blog.iota.org/towards-open-collaboration-1926e94514b8
https://blog.iota.org/towards-open-collaboration-1926e94514b8
https://blog.iota.org/towards-open-collaboration-1926e94514b8
https://blog.iota.org/towards-open-collaboration-1926e94514b8

92

Coordicide

• To make it possible for the network to grow and protect it

against certain attacks, IOTA currently relies on a

coordinator.

• The coordinator checkpoints valid transactions, which are

then validated by the entire network.

• The coordinator is being run by the IOTA Foundation.

• Removing the Coordinator from the IOTA network will

realize a long sought after goal in the field of DLT:

scalability without centralization.

• Coordicide: the death of the Coordinator.

93

Pre Coordicide vs Post Coordicide

• Pre-Coordicide Node implementation:

• IRI (Java)

• cIRI (C)

• Coordicide Proof of Concept Node implementation:

• GoShimmer (Go)

• Post-Coordicide Node implementation:

• Bee (Rust)

• Hornet (Go)

Since Coordicide is still a topic under R&D, meta-iota

focuses on Pre Coordicide (for the moment).

Yocto Project | The Linux Foundation

meta-iota

Recipes

95

cIRI

• low level implementation of an IOTA node in C

• Users to become part of the IOTA network:

• transaction relay

• network information provider

• JSON-REST HTTP interface

• Suited for Embedded (SoC, SoM):

• RAM: down to ~140MB RAM for solid node, ~500MB while

syncing

96

cIRI: Bazel

• IF development team chose Bazel as build system for cIRI

• I borrowed the Bazel recipe and bbclass from meta-

tensorflow

• Plans to switch to CMake

97

ciri_0.1.0.bb

• https://github.com/bernardoaraujor/meta-

iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb

https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/ciri/ciri_0.1.0.bb

98

Let's ping the cIRI node on the BBB

$ curl http://104.155.135.221:14265/ \

 -X POST \

 -H 'Content-Type: application/json' \

 -H 'X-IOTA-API-Version: 1' \

 -d '{"command": "getNodeInfo"}'

http://104.155.135.221:14265/

99

CClient

• IOTA client library implementation in C.

• Recipe exports libcclient.a into the target rootfs/sysroot.

• CMake support

• Patch CMakeLists.txt to avoid the ExternalProject_add

feature of CMake

• Recipe for c-iota-workshop repository as an example of

how to integrate with libcclient

100

libcclient_1.0.0.bb

• https://github.com/bernardoaraujor/meta-

iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb

• https://github.com/bernardoaraujor/meta-

iota/blob/master/recipes-iota/cclient/c-iota-

workshop_git.bb

https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/libcclient_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/master/recipes-iota/cclient/c-iota-workshop_git.bb

101

Playing around with c-iota-workshop

• Install Bazel:

https://docs.bazel.build/versions/master/install.html

• Clone repo:

$ git clone https://github.com/iota-community/c-iota-workshop

• Run an example:
$ cd c-iota-workshop

$ bazel run -c opt examples:[EXAMPLE_NAME]

• Following examples are available:

hello_world

send_hello

receive_hello

generate_address

check_balances

send_tokens

https://docs.bazel.build/versions/master/install.html

102

iota.go

• IOTA Go API Library allows:

• Create transactions

• Sign transactions

• Interact with an IRI node

• Recipe written, although more testing is needed for

validation.

• Recipe lists all golang package dependencies explicitly.

• Recipe for go-iota-workshop repository as an example of

how to integrate with iota.go library

103

iota.go_1.0.0.bb

• https://github.com/bernardoaraujor/meta-iota/blob/go-

dev/recipes-iota/iota.go/iota.go_1.0.0.bb

• https://github.com/bernardoaraujor/meta-iota/blob/go-

dev/recipes-iota/iota.go/go-iota-workshop_git.bb

https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/iota.go_1.0.0.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb
https://github.com/bernardoaraujor/meta-iota/blob/go-dev/recipes-iota/iota.go/go-iota-workshop_git.bb

104

Playing around with go-iota-workshop

• Install Golang (1.10+)

https://golang.org/doc/install

• Clone repo and download dependencies:

$ git clone https://github.com/iota-community/go-iota-workshop

$ cd go-iota-workshop; go mod download

• Run an example:
$ go run iota_go_[EXAMPLE_NAME]/main.go

• Following examples are available:

send_tx

receive_tx

zmq

helloworld

send_data

receive_data

create_address

check_balance

https://golang.org/doc/install
https://github.com/iota-community/go-iota-workshop
https://github.com/iota-community/go-iota-workshop
https://github.com/iota-community/go-iota-workshop
https://github.com/iota-community/go-iota-workshop
https://github.com/iota-community/go-iota-workshop
https://github.com/iota-community/go-iota-workshop
https://github.com/iota-community/go-iota-workshop

105

iota.lib.py / PyOTA

• Official Python library for the IOTA Core.

• Implements both the official API, as well as signing,

bundles, utilities and conversion.

• Python 3.6, 3.5 and 2.7.

• inherit setuptools

• Integration is planned for the near future

• https://github.com/iotaledger/iota.lib.py

https://github.com/iotaledger/iota.lib.py

106

Playing around with python-iota-workshop

• Install Python 3 and PIP

https://www.python.org/downloads/

https://pip.pypa.io/en/stable/installing/

• Clone repo and donwload dependencies:

$ git clone https://github.com/iota-community/python-iota-workshop

$ cd python-iota-workshop; pip install -r requirements.txt

• Run an example:
$ python code/[EXAMPLE_NAME].py

• Following examples are available:

e01_hello_world.py e04_generate_address.py e07_send_data.py

e02_send_hello.py e05_check_balance.py e08_receive_data.py

e03_receive_hello.py e06_send_tokens.py e09_zmq_listen.py

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://github.com/iota-community/python-iota-workshop
https://github.com/iota-community/python-iota-workshop
https://github.com/iota-community/python-iota-workshop
https://github.com/iota-community/python-iota-workshop
https://github.com/iota-community/python-iota-workshop
https://github.com/iota-community/python-iota-workshop
https://github.com/iota-community/python-iota-workshop

107

IOTA CLI App

• Command Line wallet and node management tool.

• It is implemented in nodejs, and it’s available as a npm

package.

• To be integrated with the help of devtool npm functionality.

• Integration planned for the near future.

• https://github.com/iotaledger/cli-app

• https://wiki.yoctoproject.org/wiki/TipsAndTricks/NPM

https://github.com/iotaledger/cli-app
https://github.com/iotaledger/cli-app
https://github.com/iotaledger/cli-app
https://wiki.yoctoproject.org/wiki/TipsAndTricks/NPM

108

recipes-support

• In order to fulfill dependencies, I had to write a few

support recipes.

• nanopb_0.3.9.3.bb: small code-size Protocol Buffers

implementation in ansi C. Especially suitable for use in

microcontrollers, but fits any memory restricted system

• keccak_git.bb: keccak sponge function family including

SHA3 implementation. Recipe needs improvement to

support more architectures)

• logger_4.0.0.bb: simple logging facility for the C

language)

• libzmq_4.3.2.bb: ZeroMQ core engine in C++

• Extra contribution to the OE community.

109

Future of meta-iota (2020-21)

• Bee

• Post Coordicide Reference Implementation

• Official IOTA Foundation

• Rust (meta-rust and meta-rust-bin?)

• Hornet

• Post Coordicide Implementation

• Community based (EDF)

• Go

Yocto Project | The Linux Foundation

Ecosystem Development Fund

Boards for Proof-of-Concept

111

IOTA Ecosystem Development Fund

• The IOTA EDF will allow me to validate Proof-of-Concepts on a few different boards with potential

for IOTA Industrial applications.

• There is a big interest for FPGA projects in the IOTA Community. This is due to the Quorum Based

computations, as well as accelerated Proof-of-Work (PoW), Address Generation and Signing.

Board Manufacturer Comment OpenEmbedded

BSP Layer

STM32MP157C-DK2 STMicroelectronics The discovery SBC for

STMicroelectronics

STM32MP1 Series

microprocessors

meta-st-stm32mp

Colibri iMX6 Solo SoM +

Viola Carrier

Toradex Toradex is a swiss

manufacturer of Industrial-

grade System on

Modules.

meta-freescale-3rdparty

Zynq-7000 SoC ZC702

Evaluation Kit

Xilinx The Zynq-7000 is a

SoC+FPGA with great

potential to accelerate

PoW, Mini-PoW, Address

Generation and Signing,

as well as future Qubic

implementations.

meta-xilinx

https://github.com/STMicroelectronics/meta-st-stm32mp
https://github.com/STMicroelectronics/meta-st-stm32mp
https://github.com/STMicroelectronics/meta-st-stm32mp
https://github.com/STMicroelectronics/meta-st-stm32mp
https://github.com/STMicroelectronics/meta-st-stm32mp
https://github.com/STMicroelectronics/meta-st-stm32mp
https://github.com/STMicroelectronics/meta-st-stm32mp
https://layers.openembedded.org/layerindex/branch/master/layer/meta-freescale-3rdparty/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-freescale-3rdparty/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-freescale-3rdparty/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-freescale-3rdparty/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-freescale-3rdparty/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-freescale-3rdparty/
https://github.com/Xilinx/meta-xilinx
https://github.com/Xilinx/meta-xilinx
https://github.com/Xilinx/meta-xilinx

112

IOTA Ecosystem Development Fund

Board Manufacturer Comment OpenEmbedded

BSP Layer

DE10-Nano Development

Kit

Terasic Technologies The E10-Nano

Development Kit is built

around the Intel/Altera

CycloneV SoC+FPGA.

Also great potential to

accelerate PoW, Mini-PoW,

Address Generation and

Signing, as well as future

Qubic implementations.

meta-de10-nano

meta-altera

BeagleBone Black Texas Instruments The most popular SBC in

the Yocto Community.

meta-yocto-bsp

meta-ti

meta-beagleboard

meta-bbb

DragonBoard 410c 96Boards SBC with a Qualcomm

Snapdragon 400

meta-qcom

Orange Pi Zero Orange Pi Popular small SBC with an

AllWinner H2 chip.

meta-sunxi

meta-allwinner-hx

Raspberry Pi Zero W Raspberry Pi Foundation Miniature version of the

RPi, with Wireless

support.

meta-raspberrypi

https://github.com/intel/meta-de10-nano
https://github.com/intel/meta-de10-nano
https://github.com/intel/meta-de10-nano
https://github.com/intel/meta-de10-nano
https://github.com/intel/meta-de10-nano
https://github.com/intel/meta-de10-nano
https://github.com/intel/meta-de10-nano
https://github.com/kraj/meta-altera
https://github.com/kraj/meta-altera
https://github.com/kraj/meta-altera
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-yocto-bsp/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ti/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ti/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ti/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-ti/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-beagleboard/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-beagleboard/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-beagleboard/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-beagleboard/
https://github.com/jumpnow/meta-bbb
https://github.com/jumpnow/meta-bbb
https://github.com/jumpnow/meta-bbb
https://layers.openembedded.org/layerindex/branch/master/layer/meta-qcom/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-qcom/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-qcom/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-sunxi/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-sunxi/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-sunxi/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-sunxi/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-allwinner-hx/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-allwinner-hx/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-allwinner-hx/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-allwinner-hx/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-allwinner-hx/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-raspberrypi/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-raspberrypi/
https://layers.openembedded.org/layerindex/branch/master/layer/meta-raspberrypi/

Class Account Setup

114

Yocto Project Dev Day Lab Setup

• The virtual host’s resources can be found here:

• Your Project: "/scratch/poky/build-qemux86_64“

• Extensible-SDK Install: "/scratch/sdk/qemux86_64“

• Sources: "/scratch/src“

• Poky: "/scratch/poky"

• Downloads: "/scratch/downloads"

• Sstate-cache: "/scratch/sstate-cache“

• You will be using SSH to communicate with your

virtual server.

115

FYI: How class project was prepared (1/2)

$

$ cd /scratch

$ git clone -b zeus git://git.yoctoproject.org/poky.git

$ cd poky

$

$ bash # set up local shell

$ # Prepare the project

$./scratch/poky/oe-init-build-env build

$ echo "SSTATE_DIR = \"/scratch/sstate-cache\"" >> conf/local.conf

$ echo "DL_DIR = \"/scratch/downloads\"" >> conf/local.conf

$ echo "IMAGE_INSTALL_append = \" gdbserver openssh libstdc++ \

 curl \"" >> conf/local.conf

$

$ # Build the project

$ bitbake core-image-base

$

116

FYI: How class project was prepared (2/2)

$ # Build the eSDK

$

$ bitbake core-image-base -c populate_sdk_ext

$ cd /scratch/poky/build/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-qemux86_64-toolchain-ext-*.sh \

 -y -d /scratch/sdk/qemux86_64

$ exit # return to clean shell

$

$

$ bash # set up local shell

$ cd /scratch/sdk/qemux86_64

$. /scratch/sdk/qemux86_64/environment-setup-qemux86_64-poky-linux-gnueabi

$ devtool modify virtual/kernel

$ exit # return to clean shell

$

117

NOTE: Clean Shells!

• We are going to do a lot of different exercises in

different build projects, each with their own

environments.

• To keep things sane, you should have a new clean

shell for each exercise.

• There are two simple ways to do it:

1. Close your existing SSH connection and open a new one

-- or –

2. Do a “bash” before each exercise to get a new sub-shell,

and “exit” at the end to remove it, in order to return to a

pristine state.

Devtool: Part 1

Kernel recipes and menuconfig

Manjukumar Harthikote Matha, Chandana Kalluri

Presented by Mark Hatle

119

Summary

• Current devtool flow

• Devtool flow for kernel

• Devtool menuconfig

120

Initial Devtool flow for kernel (a)

Devtool

Modify

Devtool

build

Devtool

finish

Make manual changes to .config file and save it

Fetch fresh copy of source from “SRC_URI”

 (Takes about 5 mins to complete the command)

Compile and check for breakages

Save changes to the recipe

• The kernel source is fetched and copied to work-shared during the

normal workflow either by running bitbake linux-yocto or bitbake

<image-name>

• User runs devtool modify linux-yocto

121

Initial Devtool flow for kernel (b)

Devtool

Modify

Devtool

build

Devtool

finish

Make manual changes to .config file and save it

Fetch fresh copy of source from “SRC_URI”

 (Takes about 5 mins to complete the command)

Compile and check for breakages

Save changes to the recipe

• The command will take about 5 mins because it will extract a new

copy of source into workspace even though a copy of kernel source

is present in a shared location from normal flow. Next it will configure

the kernel.

122

New Devtool flow for kernel – case 1 (a)

Devtool

Modify

Devtool

build

Devtool

finish

Use menuconfig GUI to make

 modifications to kernel configs

Fetch fresh copy of source from “SRC_URI”

(Takes about 15 seconds)

Compile and check for breakages

Save changes to the recipe

Devtool

menuconfig

• The kernel source is fetched and copied to work-shared during the

normal workflow either by running bitbake linux-yocto or bitbake

<image-name>

123

New Devtool flow for kernel – case 1 (b)

Devtool

Modify

Devtool

build

Devtool

finish

Use menuconfig GUI to make

 modifications to kernel configs

Fetch fresh copy of source from “SRC_URI”

(Takes about 15 seconds)

Compile and check for breakages

Save changes to the recipe

Devtool

menuconfig

• User runs devtool modify linux-yocto

• The devtool modify command will take about 15 seconds because

it will copy source from work-shared and configure the kernel.

124

New Devtool flow for kernel – case 2 (a)

Devtool

Modify

Devtool

build

Devtool

finish

Use menuconfig GUI to make

 modifications to kernel configs

Fetch fresh copy of source from “SRC_URI”

(Takes about 5 minutes)

Compile and check for breakages

Save changes to the recipe

Devtool

menuconfig

• The kernel source is not fetched and copied to work-shared during

the normal workflow either by not running bitbake linux-yocto or

bitbake <image-name>

125

New Devtool flow for kernel – case 2 (b)

Devtool

Modify

Devtool

build

Devtool

finish

Use menuconfig GUI to make

 modifications to kernel configs

Fetch fresh copy of source from “SRC_URI”

(Takes about 5 minutes)

Compile and check for breakages

Save changes to the recipe

Devtool

menuconfig

• User runs devtool modify linux-yocto

• The devtool modify command will take about 5 mins because it will

fetch new copy of source into workspace and place a copy in work-

shared.

Yocto Project | The Linux Foundation

Commands

127

Original Devtool modify flow commands
(pre 3.0)

$ source oe-init-build-env

$ bitbake linux-yocto <this takes about 5 mins>

$ devtool modify linux-yocto <this takes about 5 mins>

128

New Devtool modify flow commands – Case 2

$ source oe-init-build-env

$ ls tmp/work-shared/qemux86-64/kernel-source <kernel source not present>

$ devtool modify linux-yocto <this takes about 5 mins>

$ ls tmp/work-shared/qemux86-64/kernel-source <kernel source copied >

$ source oe-init-build-env

$ bitbake linux-yocto <this takes about 5 mins>

$ # Observe that the kernel souce was fetched:

$ ls tmp/work-shared/qemux86-64/kernel-source

$ devtool modify linux-yocto <this takes about 15 seconds>

New Devtool modify flow commands – Case 1

129

Devtool menuconfig:

$ source oe-init-build-env

$ devtool modify linux-yocto

$ devtool menuconfig linux-yocto

1. Enable this

kernel option,

under General

Setup

2. Save this

change

130

Devtool menuconfig summary:

$ devtool menuconfig linux-yocto

…

Sstate summary: Wanted 0 Found 0 Missed 0 Current 43 (0% match, 100% complete)

NOTE: Executing Tasks

NOTE: Setscene tasks completed

Currently 1 running tasks (347 of 347) 99% |################################ |

0: linux-yocto-5.2.17+git999-r0 do_menuconfig - 0s (pid 31817)

NOTE: Tasks Summary: Attempted 347 tasks of which 339 didn't need to be rerun and all

succeeded.

INFO: Updating config fragment /scratch/poky/build/workspace/sources/linux-yocto/

oe-local-files/devtool-fragment.cfg

Review the change (config fragment) at the path specified above.

131

Devtool finish

$ devtool finish linux-yocto meta-yocto-bsp

$cat ../meta-yocto-bsp/recipes-kernel/linux/linux-yocto_%.bbappend

FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

SRC_URI += "file://devtool-fragment.cfg"

$cat ../meta-yocto-bsp/recipes-kernel/linux/linux-yocto/devtool-fragment.cfg

CONFIG_LOCALVERSION_AUTO=y

Devtool: Part 2

Kernel Modules with eSDKs

 Marco Cavallini

133

Kernel modules with eSDKs – Overview

• The Extensible SDK (eSDK) is a portable and

standalone development environment , basically an

SDK with an added bitbake executive via devtool.

• The “devtool” is a collection of tools to help

development, in particular user space development.

• We can use devtool to manage a new kernel module:

• Like normal applications is possible to import and create a

wrapper recipe to manage the kernel module with eSDKs.

134

Kernel modules with eSDKs –
Compiling a kernel module

• We have two choices

• Out of the kernel tree

• When the code is in a different directory outside of the

kernel source tree

• Inside the kernel tree

• When the code is managed by a KConfig and a Makefile

into a kernel directory

135

Kernel modules with eSDKs –
Pro and Cons of a module outside the kernel tree

● When the code is outside of the kernel source tree in

a different directory

● Advantages

– Might be easier to handle modifications than modify it into

the kernel itself

● Drawbacks

– Not integrated to the kernel configuration/compilation

process

– Needs to be built separately

– The driver cannot be built statically

136

Kernel modules with eSDKs –
Pro and Cons of a module inside the kernel tree

● When the code is inside the same directory tree of

the kernel sources

● Advantages

– Well integrated into the kernel configuration and

compilation process

– The driver can be built statically if needed

● Drawbacks

– Bigger kernel size

– Slower boot time

137

Kernel modules with eSDKs – The source code

#include <linux/module.h>

#include <linux/kernel.h>

static int __init hello_init(void)

{

 printk("When half way through the journey of our life\n");

 return 0;

}

static void __exit hello_exit(void)

{

 printk("I found that I was in a gloomy wood\n");

}

module_init(hello_init);

module_exit(hello_exit);

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("Greeting module from the Divine Comedy");

MODULE_AUTHOR("Dante Alighieri");

138

Kernel modules with eSDKs – The Makefile

obj-m += hellokernel.o

SRC := $(shell pwd)

all:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules

modules_install:

 $(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

• KERNEL_SRC is the location of the kernel sources.

• This variable is set to the value of the STAGING_KERNEL_DIR

within the module class (module.bbclass)

• Sources avalable on https://github.com/koansoftware/simplest-kernel-module.git

and in /scratch/src/kmod

https://github.com/koansoftware/simplest-kernel-module.git
https://github.com/koansoftware/simplest-kernel-module.git
https://github.com/koansoftware/simplest-kernel-module.git
https://github.com/koansoftware/simplest-kernel-module.git
https://github.com/koansoftware/simplest-kernel-module.git
https://github.com/koansoftware/simplest-kernel-module.git

139

Kernel modules with eSDKs – Devtool setup

• Start a new Shell! Otherwise, the existing bitbake environment can cause

unexpected results

• Here is how the eSDK was prepared for this class account:

• This installed the eSDK into:

/scratch/sdk/qemux86_64

< DO NOT ENTER THE FOLLOWING COMMANDS : ALREADY EXECUTED >

$ bitbake core-image-base -c populate_sdk_ext

$ cd /scratch/working/build/tmp/deploy/sdk/

$./poky-glibc-x86_64-core-image-base-core2-64-qemux86-64-toolchain-ext-3.0.sh \

 -d /scratch/sdk/qemux86_64 –y

$ cd /scratch/sdk/qemux86_64

$. environment-setup-core2-64-poky-linux

$ devtool modify virtual/kernel

140

Kernel modules with eSDKs – Overview

• Starting from now we are using the eSDK and not the project

• During this exercise we using two different machines

• The HOST containing the eSDK (providing devtool)

• The TARGET running the final qemux86_64 image

Host

eSDK:~$

Target

root@qemux86_64:~$

141

Kernel modules with eSDKs – Globalsetup

• Open two terminal windows and setup the eSDK environment in each

one

$ cd /scratch/sdk/qemux86_64

$ bash # safe shell

$ source environment-setup-core2-64-poky-linux

…

SDK environment now set up;

additionally you may now run devtool to perform development tasks.

Run devtool --help for further details.

$

142

Kernel modules with eSDKs – build the target image

• After you have setup the eSDK environment, build an image

• This will create a new image into:

/scratch/sdk/qemux86_64/tmp/deploy/images/qemux86_64

$ devtool build-image

143

Kernel modules with eSDKs – build the target image

• Run the image to check if everything is OK

• This will run the QEMU machine in the TARGET shell you were using

• Login using user: root (no password required)

$ runqemu qemux86-64 nographic

144

Kernel modules with eSDKs – Hooking a new
module into the build

• Run the devtool to add a new recipe (on the HOST side)

• This generates a minimal recipe in the workspace layer

• This adds EXTERNALSRC in an

workspace/appends/simplestmodule_git.bbappend file that points

to the sources

• In other words, the source tree stays where it is, devtool just

creates a wrapper recipe that points to it

• Note: this does not add your image to the original build engineer’s image, which

requires changing the platform project’s conf/local.conf

$ devtool add --version 1.0 simplestmodule \
 /scratch/src/kmod/simplest-kernel-module/

145

After the add

Workspace layer layout

$ tree /scratch/sdk/qemux86_64/workspace/

/scratch/sdk/qemux86_64/workspace/

├── appends

│ └── simplestmodule_git.bbappend

├── conf

│ └── layer.conf

├── README

└── recipes

 └── simplestmodule

 └── simplestmodule_git.bb

146

Kernel modules with eSDKs – Build the Module

• Build the new recipe (on the HOST side)

This will create the simplestmodule.ko kernel module

This downloads the kernel sources (already downloaded for you):

 linux-yocto-4.12.12+gitAUTOINC+eda4d18ce4_67b62d8d7b-r0 do_fetch

$ devtool build simplestmodule

147

Kernel modules with eSDKs – Deploy the Module

• Get the target’s IP address from the target serial console

root@qemux86_64:~# ifconfig

• In the eSDK (HOST) shell, deploy the output

 (the target’s ip address may change)

• NOTE: the ‘-s’ option will note any ssh keygen issues, allowing you to

(for example) remove/add this IP address to the known hosts table

$ devtool deploy-target -s simplestmodule root@192.168.7.2

148

Kernel modules with eSDKs – Deploy Details

• In the target (qemux86_64), observe the result of deployment

devtool_deploy.list 100% 108 0.1KB/s 00:00

devtool_deploy.sh 100% 1017 1.0KB/s 00:00

./

./lib/

./lib/modules/

./lib/modules/5.2.17-yocto-standard/

./lib/modules/5.2.17-yocto-standard/extra/

./lib/modules/5.2.17-yocto-standard/extra/hellokernel.ko

./usr/

./usr/include/

./usr/include/simplestmodule/

./usr/include/simplestmodule/Module.symvers

./etc/

./etc/modprobe.d/

./etc/modules-load.d/

NOTE: Successfully deployed

/scratch/sdk/qemux86_64/tmp/work/qemux86_64-poky-linux-gnueabi/simplestmodule/

149

Kernel modules with eSDKs – Load the Module

• In the target (qemux86_64), load the module and

observe the results

root@qemux86_64:~# depmod –a

root@qemux86_64:~# modprobe hellokernel

[874.941880] hellokernel: loading out-of-tree module taints kernel.

[874.960165] When half way through the journey of our life

root@qemux86_64:~# lsmod

Module Size Used by

hellokernel 929 0

nfsd 271348 11

150

Kernel modules with eSDKs – Unload the Module

• In the target (qemux86_64), unload the module

root@qemux86_64:~# modprobe -r hellokernel

[36.005902] I found that I was in a gloomy wood

root@qemux86_64:~# lsmod

Module Size Used by

nfsd 271348 11

151

Kernel modules with eSDKs – automatic load of the
module at boot

• In the target (qemux86_64), edit the file below and add a new line

containing the module name ‘hellokernel’

• Then reboot the Qemu machine and verify

root@qemux86_64:~# vi /etc/modules-load.d/hello.conf

< insert the following line and save >

hellokernel

root@qemux86_64:~# reboot

152

Questions

Devtool: Part 3

Bonus Kernel Lab

 Tom Zanuss, Darren Hart, Saul Wold, Richard

Griffiths, and YOU!

154

Bonus Kernel Lab!

• Here is you chance to learn more about kernel

development support, plus help contribute tutorial

content to Yocto Project!

• There is an important tradition of providing a Kernel

Lab to help developers. The problem is that the last

one was done for YP-2.6, and it needs an update to

YP-3.*.

• Give the lab a try. If you find errors, let us know. If it is

missing topic that would like addressed, or parts are

unclear, let us know. If you can help provide fixes and

improvements, then even better!

155

Bonus Kernel Lab

• The current document can be found here:

• https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.pdf

• https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt

• The sample source ZIP file can be found here:

• TDB

• If you want to share your observations with us and others

working on this, email myself and/or Tim and we will

connect you:

• david.reyna@windriver.com

https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.pdf
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.pdf
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.pdf
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.pdf
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.pdf
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt
https://wiki.yoctoproject.org/wiki/File:Kernel-lab-2.6.odt

6. User Space Topics

Rudi Streif

Presented by David Reyna

157

Overview

• Activity Setup

• Users, Groups and Passwords

• Login Shells

• Sudo Configuration

• SSH Server Configuration

Please ask questions.

Your questions might help others too.

158

Activity Setup

$ cd /scratch/poky

$ source oe-init-build-env build-userspace

$ bitbake-layers create-layer meta-activity3

NOTE: Starting bitbake server…

Add your new layer with ‘bitbake-layers add-layer meta-activity3’

$ bitbake-layers add-layer meta-activity3

NOTE: Starting bitbake server…

$ cat conf/bblayers.conf

…

BBLAYERS ?= “ \

 /scratch/poky/meta \

 /scratch/poky/meta-poky \

 /scratch/poky/meta-yocto-bsp \

 /scratch/poky/build/meta-activity3 \

 “

• Create an activity layer and add it to the build

environment

159

Activity Setup

• Create an image recipe

SUMMARY = "Activity 3 Test Image"

DESCRIPTION = "Activity 3 Test Image for Yocto Project Summit"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

 packagegroup-base-extended \

 ${CORE_IMAGE_EXTRA_INSTALL} \

 "

inherit core-image

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

<…boot …>

<close QEMU with CTRL-A,X (typed fast)>

$ mkdir -p meta-activity3/recipes-core/images

$ pushd meta-activity3/recipes-core/images

$ vi core-image-activity3.bb

160

Users, Groups and Passwords

• The extrausers class provides a mechanism for managing
users, groups and passwords.

• Available commands:

 useradd

 usermod

 userdel

 groupadd

 groupmod

 groupdel

• Commands are added to the EXTRA_USERS_PARAMS
variable.

• Passwords must be provided in encrypted form.

161

Setting root user password and creating a user

$ vi core-image-activity3.bb

SUMMARY = "Activity 3 Test Image"

DESCRIPTION = "Activity 3 Test Image for Yocto Project Summit"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

 packagegroup-base-extended \

 ${CORE_IMAGE_EXTRA_INSTALL} \

 "

inherit core-image

inherit extrausers

ROOT_PASSWORD = "secret"

DEV_PASSWORD = "hackme"

EXTRA_USERS_PARAMS = " \

 groupadd developers; \

 useradd -p `openssl passwd ${DEV_PASSWORD}` developer; \

 useradd -g developers developer; \

 usermod -p `openssl passwd ${ROOT_PASSWORD}` root; \

 "

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

162

Works, but...

• Changing the image recipe for new users is not really

elegant.

• It would be better if we could set the users we want to

add and their passwords in a configuration file such

as local.conf or a distro configuration.

163

A little script goes a long way...

Image post-processing to setup user accounts

inherit extrausers

Space-delimited list of user:password:<group,group,...> tuples

NEWUSERS ??= ""

root password

ROOT_PASSWORD ??= ""

python () {

 params = ""

 # add new users

 newusers = (d.getVar("NEWUSERS", True) or "").split()

 if newusers:

 for user in newusers:

 name,password,groups = user.split(":")

 for group in groups.split(","):

 params += "groupadd -f " + group + "; "

 params += "useradd -p `openssl passwd " + password + "` "

 if groups:

 params += "-G " + groups + " "

 params += name + "; "

 # modify root password

 rootpw = d.getVar("ROOT_PASSWORD", True) or ""

 if rootpw:

 params += "usermod -p `openssl passwd " + rootpw + "` root; "

 d.setVar("EXTRA_USERS_PARAMS", params)

}

$ vi user-setup.inc

164

Using the script

$ vi core-image-activity3.bb

$ vi /scratch/poky/build-userspace/conf/local.conf

Users to be added: space-delimited list of name:password:groups tuples.

groups is comma-delimited list of additional group names

NEWUSERS = "developer:hackme:developers"

Root User Password

ROOT_PASSWORD = "secret"

SUMMARY = "Activity 3 Test Image"

DESCRIPTION = "Activity 3 Test Image for Yocto Project Summit"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

 packagegroup-base-extended \

 ${CORE_IMAGE_EXTRA_INSTALL} \

 "

inherit core-image

require user-setup.inc

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

5. Devtool hands-on Seminar

Part 2

166

Image Post Processing

• Sometimes it is necessary to processing such as adding,
modifying files and more after the root file system has been
created but before it is packaged into the different formats.

• Through the variable ROOTFS_POSTPROCESS_COMMAND you can specify
a list of shell functions to be executed.

• Commonly the variable and the functions are added to the image
recipe.

• The functions are executed in the order they appear in the
variable.

• The search path for shell commands includes the native system
root of the build environment and build host PATH from the user
environment.

• The variable IMAGE_ROOTFS points to the directory where the build
system assembles the root file system.

167

Setting Login Shells

$ vi core-image-activity3.bb

SUMMARY = "Activity 3 Test Image"

DESCRIPTION = "Activity 3 Test Image for Yocto Project Summit"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

 packagegroup-base-extended \

 ${CORE_IMAGE_EXTRA_INSTALL} \

 "

inherit core-image

modify_shells() {

 printf "# BAR /etc/shells: valid login shells\n/bin/sh\n/bin/bash\n" \

 > ${IMAGE_ROOTFS}/etc/shells

}

ROOTFS_POSTPROCESS_COMMAND += "modify_shells;"

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

168

Sudo Configuration

$ vi core-image-activity3.bb

SUMMARY = "Activity 3 Test Image"

DESCRIPTION = "Activity 3 Test Image for Yocto Project Summit"

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

 packagegroup-base-extended \

 ${CORE_IMAGE_EXTRA_INSTALL} \

 sudo \

 "

inherit core-image

modify_sudoers() {

 sed 's/# %sudo/%sudo/' < ${IMAGE_ROOTFS}/etc/sudoers > \

 ${IMAGE_ROOTFS}/etc/sudoers.tmp

 mv ${IMAGE_ROOTFS}/etc/sudoers.tmp ${IMAGE_ROOTFS}/etc/sudoers

}

ROOTFS_POSTPROCESS_COMMAND += "modify_sudoers;"

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

Note: You have to add a regular user to the sudo group for this to work.

169

SSH Server Configuration

$ vi core-image-activity3.bb

configure_sshd() {

 # disallow password authentication

 echo “PasswordAuthentication no” >> ${IMAGE_ROOTFS}/etc/ssh/sshd_config

 # create keys in tmp/deploy/keys

 mkdir -p ${DEPLOY_DIR}/keys

 if [! -f ${DEPLOY_DIR}/keys/root-sshkey]; then

 /usr/bin/ssh-keygen -t rsa -N '' \

 -f ${DEPLOY_DIR}/keys/root-sshkey

 fi

 # add public key to authorized_keys for root

 mkdir -p ${IMAGE_ROOTFS}/home/root/.ssh

 cat ${DEPLOY_DIR}/keys/root-sshkey.pub \

 >> ${IMAGE_ROOTFS}/home/root/.ssh/authorized_keys

}

ROOTFS_POSTPROCESS_COMMAND += "configure_sshd;"

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

[in a new ssh shell to your build system]

$ ssh -i \

 /scratch/poky/build-userspace/tmp/deploy/keys/root-sshkey \

 root@192.168.7.2

170

Nice, but once again not very flexible...
$ vi sshd-setup.inc

Image post-processing to configure sshd

Setup ssh key login for these users

SSH_USERS ??= ""

configure_sshd() {

 # disallow password authentication

 echo "PasswordAuthentication no" >> ${IMAGE_ROOTFS}/etc/ssh/sshd_config

 # keys will be stored tmp/deploy/keys

 mkdir -p ${DEPLOY_DIR}/keys

 # create the keys for the users

 for user in ${SSH_USERS}; do

 if [! -f ${DEPLOY_DIR}/keys/${user}-sshkey]; then

 /usr/bin/ssh-keygen -t rsa -N '' \

 -f ${DEPLOY_DIR}/keys/${user}-sshkey

 fi

 # add public key to authorized_keys for the user

 mkdir -p ${IMAGE_ROOTFS}/home/${user}/.ssh

 cat ${DEPLOY_DIR}/keys/${user}-sshkey.pub \

 >> ${IMAGE_ROOTFS}/home/${user}/.ssh/authorized_keys

 done

}

ROOTFS_POSTPROCESS_COMMAND += "configure_sshd;"

171

Using the script
$ vi core-image-activity3.bb

$ vi /scratch/poky/build-userspace/conf/local.conf

Users for whom to create ssh login with key

SSH_USERS = "root developer"

SUMMARY = "Activity 3 Test Image"

DESCRIPTION = "Activity 3 Test Image for Yocto Project Summit "

LICENSE = "MIT"

IMAGE_INSTALL = "packagegroup-core-boot \

 packagegroup-base-extended \

 ${CORE_IMAGE_EXTRA_INSTALL} \

 "

inherit core-image

require sshd-setup.inc

$ bitbake core-image-activity3

$ runqemu qemux86-64 nographic

[in a new ssh shell to your build system]

$ ssh -i \

 /scratch/poky/build-userspace/tmp/deploy/keys/developer-sshkey \

 developer@192.168.7.2

172

EoA (End of Activity)

• Cleanup

• Thank You!

$ cd /scratch/poky/build-userspace

$ bitbake-layers remove-layer meta-activity3

Questions and Answers

Thank you for your

participation!

Activity Eight

Tools, Toaster, User Experience

David Reyna

176

Toaster: Latest Features (1/2)

• Toaster Documentation

• https://www.yoctoproject.org/docs/latest/toaster-manual/toaster-

manual.html

• Toaster Service Without a Web Server (“noweb”)

• Good for capturing command line build(s) directly into the db

• Toaster Service Without Remote Builds (“nobuild”)

• Good for sharing build local status, without enabling external

people creating projects and starting builds on your host

• Toaster Service – Build Status within Containers

• New REST/JSON API to access the progress and health of bitbake

builds via HTTP; very handy for containers

• Build Status options: “Completed”, “In Progress”, “Specific Status”

177

Toaster: Latest Features (2/2)

• Compatibility between

Command Line and

Toaster builds

• New “Import command

line build” option

• New “Merge Toaster

Settings” into standard

conf files”

178

Intel System Studio 2019: Yocto Project Compatible

• The Wind River Application and Project plug-ins have

been shared with Intel System Studio, with the idea of

open sourcing them to Eclipse.org

• Implementation is architecture agnostic

• Application Project Features:

• Awareness of YP compatible SDKs/eSDKs

• Ability to register multiple SDKs

• Automatic generation of “Build Specs” for each machine

variant in each SDK

• Ability to enable/disable debug flags

• Debugger deploy and access over GDB/TCF

• Set of sample applications

179

Intel System Studio 2019: Yocto Project Compatible

• Platform Project

Features:

• Configuration/Upda

tes via Toaster

• Basic build targets

directly from ISS

• Eclipse-based

Kernel

Configuration Tool

• Tree view to

browse deploy

artifacts

180

Intel System Studio 2019: Yocto Project Compatible

• Import:

• Existing command

line project

• Existing SDK/eSDK

