
Creating a Custom Embedded Linux* OS for Any 
Embedded Device using the Yocto Project* 
 
Hands-on Lab 
 

SFTL003 

Tracey Erway - Product Marketing Engineer, Intel Corporation 
Scott Garman - Embedded Linux Engineer, Intel Corporation 
Ishu Verma    - SW Technical Marketing Engineer, Intel Corporation 



Agenda 

• Introduction to the Yocto Project 

• Key Concepts 

• Recipes In-Depth 

• Using Layers 

• Building an Image 

• Using the Emulator Environment 

• Rebuilding for a New Target Device 

• Tools for Application Development 

 
 
 
The PDF for this Session presentation is available from our 
Technical Session Catalog at the end of the day at: 
intel.com/go/idfsessions 
 
URL is on top of Session Agenda Pages in Pocket Guide  
 

2 



Welcome! 

Getting to know you 
 

• What brought you to this hands-on lab? 

• Are you currently using Linux*? 

• How are you building your Linux? 

• What problems are you working on with 
embedded Linux? 

• What topics are you most interested in? 

 

3 



The Yocto Project* is an open source 
collaboration project that provides 

templates, tools and methods to help you 
create custom Linux-based systems for 

embedded products regardless of 
hardware architecture. 

• Focused resources for system application 
developers who need to customize a Linux 
distribution for a device 

• Validated and tested BSPs in a common format 

• Automatically creates an application development 
SDK customized for each specific device 

• Supported by embedded industry leaders across 
multiple architectures (IA, ARM, PowerPC, MIPS, 
etc) 

• Is a great starting point for “roll your own” 
embedded developers and commercial distribution 
vendors. 

• Enables easy transition from Proof of Concept 
(POC) to supported Commercial Linux with no loss 
of optimizations, code or design 

• Proprietary code can be included in build structure 
within a separate layer, which can be kept private. 
(security) 

• Project hosted by the Linux* Foundation 

Industrial 
& Medical 

Networking & 
Storage 

M2M Point of Sale Simple 
Electronics 

4 

It’s not an embedded Linux distribution – 

It creates a custom one for you. 

Point of  
Sale 

4 

www.yoctoproject.org 

 

™ 

Meet the Yocto Project* 

4 



          Participating Organizations 

Silicon 
Vendors 

OSVs 
 
 
 

Embedded 
Tools, 
Consulting 
Services, 
Users…  

Contact  the  
Linux Foundation 

If you are interested in becoming a participating organization. 
(Take part in Governance, Advisory Board, Advocacy and Communications) 
Project hosted by the Linux Foundation 

5 

http://www.dell.com/us/en/gen/df.aspx?refid=df&s=gen
http://en.wikipedia.org/wiki/File:Freescale_Semiconductor_logo.svg
http://en.wikipedia.org/wiki/File:Intel-logo.svg
http://en.wikipedia.org/wiki/File:LSI_logo_RGB_125x42.jpg
http://en.wikipedia.org/wiki/File:Mentor_logo.png
http://en.wikipedia.org/wiki/File:Logo_montavista.png
http://en.wikipedia.org/wiki/File:Texas_Instruments_Logo.svg
http://en.wikipedia.org/wiki/File:Wind_River_logo.gif
http://www.tilera.com/
http://www.panasonic.com/
http://www.netlogicmicro.com/


Intel Roadmap – New BSPs at 1.1 Release  
2Q 2012 

APR MAY JUN 

3Q 2012 

JUL AUG SEP 

2Q 2011 

APR MAY JUN 

3Q 2011 

JUL AUG SEP 

4Q 2011 

OCT NOV DEC 

1Q 2012 

JAN FEB MAR 

Software 
Platform 

Yocto 
1.0 

Hardware 
Platforms 

Yocto 
1.0.1 

Yocto 
1.1 

Yocto 
1.2 

Yocto Project*  BSP for Black Sand1  1-N450  Intel® Embedded Development Board1  (Intel® Atom™ Processor 

N450)2 

Yocto Project  BSP for Crown Bay  Platform1 (Intel® Atom™ Processor E6xx Series)2 

Yocto Project  BSP for EMenlow  Platform1 (Intel® Atom™ Processor Z5xx Series)2 

Yocto Project  BSP for Sugar Bay  Platform1 (Intel® Core™ i3 Processor, Intel® Core™ i5 Processor, Intel® Core™ 

i7 Processor)2 

Yocto Project  BSP for Jasper Forest  Platform1 (Intel® Xeon® Processor 5500 and 3500 Series)2 

All products, computer systems, dates and figures specified are preliminary based on current 
expectations, and are subject to change without notice. 

6 

1 Code name. 2 BSPs (Board Support Packages) are available to enable the Yocto open source project with no factory support implied or intended. * Other names and brands may be 

claimed as the property of others. Commercial supported Yocto project based OS distributions come from OSVs.  

Yocto Project v1.0 Feature 
Sampling 
• Improved performance from v0.9 
• Bitbake (build tool) parses metadata in parallel 
• Improved reliability in Bitbake‟s fetcher 
• Sandy Bridge BSP 
• Supports most recent Linaro kernel and ARM* 

toolchain  

Yocto Project v1.0.1 Features 
• Maintenance and bugfix release  v1.0 

Yocto Project v1.1 Feature Sampling 
• Create a compelling Image Creator interface. 
• Complete multi-lib and OE-core configuration work.  
• Documentation and/or tutorials to ease BSP creation. 
• Improved Build Performance  
• Upstream features to reduce the number of patches in Yocto Project 

 
• Wind River has adopted parts of Yocto Project in  WR Linux* 4.2 and 4.3  
• “Plan of Vision” for  the WR Linux 5 series 



WHAT WHO 
SUPPORTS 

WHERE 
DISTRIBUTED 

HOW TO GET 

BSPs in common 
Yocto Project 
format 
 

Community YOCTO PROJECT 
WEBSITE 

www.yoctoproject.org 

Complete platform 
configuration, 
environment, 

Community YOCTO PROJECT 
WEBSITE 
 

www.yoctoproject.org 

Embedded Media 
and Graphics 
Driver - EMGD 
(Atom) 
 

Yocto Project will 
test specific 
configurations -
provided on 
website.   

YOCTO PROJECT 
WEBSITE or ECG 
EDC WEBSITE 
 

www.yoctoproject.org 
Integrated Image 
Or  
www.edc.intel.com 
Driver 

Commercial OS 
Commercial 
Support 
 

OSV OSV Thru OSV 

Where to Get Things 

7 

http://www.yoctoproject.org/
http://www.edc.intel.com/


Intel® Embedded Software Development 
Tool Suite for Intel® Atom™ Processor 

Intel® C++ 
Compiler 

Intel® Atom™ Processor 

JTAG I/F 

Intel® 

Integrated 

Performance 

Primitives 

Intel® 

VTune™ 
Amplifier XE 

Intel® 

Application 
Debugger 

Intel® 

JTAG 
Debugger 

Target OS: 
Linux*; MeeGo*  

Kernel debug; 
On-Chip trace & 
SMP run control 

Identify 
optimization 
opportunities Thread Specific 

Run Control & 
Thread Grouping 

Broad Processor 
coverage CE4xxx, 
Z6xx, E6xx, Nxx series 

Performance 
optimize your 

code for IA 

Performance 
optimize your 

code for IA 

Linux* Operating System Support 

Support 

for the 

Yocto 

Project  

A comprehensive Suite of Tools for 

Embedded Development, Analysis  

      and System Debugging 

 http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/  
8 

http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/
http://software.intel.com/en-us/articles/intel-tools-for-intel-atom-processors/


• One common Linux* OS for all major architectures 

• Just change one line in a config file and rebuild 

• Easy transition to a commercial embedded Linux 

 Build a complete Linux system in about an hour from pre-
compiled sources (about 90 minutes with X) – quick start 

• Start with a validated collection of packages 

• Access to a great collection of app developer tools (performance, 
debug, power analysis, Eclipse*) 

• Use Kernel development tools to manage patches 

• Access to interaction with the Embedded Open Community  

 

A Few Benefits of  
The Yocto Project* 

Meet Scott Garman 

9 



Yocto Project* Lab Prerequisites 

To get the most out of this hands-on lab, you 
should be familiar with the following concepts 

and technologies: 

 

• Makefiles 

• Autotools 

• Package formats: RPM and/or DEB 

• Root filesystem 

 

10 

At least some experience building software within a 
Linux* environment is recommended 



Key Concepts Agenda 

 

• Overview of the Yocto Project* Build 
System 

 

• Yocto Project* Workflow 

 

• Quick Start Guide in a Slide 

 

• Exercise 1: Poky Directory Tree Layout 

11 



Yocto Project* Build System Overview 

 

 

• Poky – build system used by the Yocto Project* 

• BitBake – a task executor and scheduler 

• Metadata – task definitions 

• Configuration (.conf) – global definitions of 
variables 

• Classes (.bbclass) – encapsulation and 
inheritance of build logic, packaging, etc. 

• Recipes (.bb) – the logical units of 
software/images to build 

12 

Poky = BitBake + metadata 



Key Concepts 

• The Yocto Project* provides tools and metadata for 
creating custom Linux* images 

• These images are created from a repository of 
„baked‟ recipes 

• A recipe is a set of instructions for building 
packages, including: 

• Where to obtain the upstream sources and which 
patches to apply 

• Dependencies (on libraries or other recipes) 

• Configuration/compilation options 

• Define what files go into what output packages 

13 



Yocto Project* Workflow 

14 



Quick Start Guide in a Slide 

Obtain our sources: 

• Download poky-bernard-5.1.0-m3.tar.bz2  

• tar xjf poky-bernard-5.1.0-m3.tar.bz2 

• cd poky-bernard-5.1.0-m3 
 

Build a Linux* image: 

• source oe-init-build-env 

• MACHINE=qemux86 bitbake core-image-minimal 

some time passes 
 

Run the image under emulation: 

• runqemu qemux86 

15 



Exercise 1: Poky Directory Tree Layout 

• Objective: Familiarize yourself with how the 
Poky metadata sources are organized 

 

• Learn where you can find conf files, 
BitBake class files, and recipe files 

 

16 

Log into your lab computer: 
Password: yoctoproject 



Poky Directory Tree Map 

• bitbake: the BitBake utility itself 

• documentation: documentation sources 

• scripts: various support scripts (e.g, 
runqemu) 

• meta/conf: important configuration files, 
bitbake.conf, reference distro config, 
machine configs for qemu architectures 

• meta/classes: BitBake classes 

• meta/recipes-<xyz>: recipes 

17 



Recipes In-Depth Agenda 

 

 

• Example Recipe: ethtool 

 

• Standard Recipe Build Steps 

 

• Exercise 2: Examining Recipes 

18 



Example Recipe – ethtool_2.6.36.bb 

 

SUMMARY = "Display or change ethernet card settings" 

DESCRIPTION = "A small utility for examining and tuning the 
settings of your ethernet-based network interfaces." 

HOMEPAGE = "http://sourceforge.net/projects/gkernel/" 

LICENSE = "GPLv2+" 

 

SRC_URI = "${SOURCEFORGE_MIRROR}/gkernel/ethtool-
${PV}.tar.gz" 

 

inherit autotools 

19 



Standard Recipe Build Steps 

• Building recipes involves executing the 
following functions, which can be overridden 
when needed for customizations 
 

• do_fetch 

• do_unpack 

• do_patch 

• do_configure 

• do_compile 

• do_install 

• do_package 

20 



Exercise 2: Examining Recipes 

 

• meta/recipes-extended/bc/ 

• Uses LIC_FILES_CHKSUM and SRC_URI checksums 

• Note the DEPENDS declaration 

• meta/recipes-core/psplash/ 

• Uses SVN for sources 

• Sets up an init service 

• meta/recipes-multimedia/flac/ 

• Includes custom source patches 

• Customizes autoconf configure options 

• Breaks up output into multiple binary packages 

 

 

 

 

21 



Layers Agenda 

 

• Introduction to Layers 
 

• Stacking Customizations 
 

• Adding Layers 
 

• Board Support Packages 
 

• Example machine configuration 
 

• Kernel configuration 

 

 

 22 



Layers 

• The Yocto Project* build system is 
composed of layers 

• A layer is a logical collection of recipes 
representing the core, a Board Support 
Package (BSP), or an application stack 

• All layers have a priority and can 
override policy and config settings of 
the layers beneath it 

23 



Stacking Customizations 

24 



Using Layers 

• Layers are added to your build by editing the 
build/conf/bblayers.conf file: 

 
BBLAYERS = " \ 

  /data/poky/meta \           # core system 

  /data/poky/meta-yocto \  # yocto config and recipes 

  /data/meta-skynet \        # my customization layer 

  " 

25 



Board Support Packages 

• BSPs are layers to enable support for specific 
hardware platforms 
 

• Defines machine configuration for the 
“board” 
 

• Adds machine-specific recipes and 
customizations 

–Kernel config 

–Graphics drivers (e.g, Xorg) 

–Additional recipes to support hardware features 

26 



Example Machine Configuration 

TARGET_ARCH = "x86_64" 

 

MACHINE_FEATURES = "kernel26 screen keyboard pci usbhost ext2 ext3 x86” 

KERNEL_IMAGETYPE = "bzImage" 

 

PREFERRED_PROVIDER_virtual/kernel = "linux-yocto" 

PREFERRED_PROVIDER_linux-libc-headers ?= "linux-libc-headers-yocto" 

 

PREFERRED_PROVIDER_virtual/libx11 ?= "libx11-trim" 

PREFERRED_PROVIDER_virtual/libgl  ?= "mesa-dri" 

PREFERRED_PROVIDER_virtual/xserver ?= "xserver-xf86-dri-lite" 

PREFERRED_PROVIDER_virtual/xserver-xf86 ?= "xserver-xf86-dri-lite" 

XSERVER ?= "xserver-xf86-dri-lite \ 

           xf86-input-mouse \ 

           xf86-input-keyboard \ 

           xf86-video-intel" 

 

MACHINE_EXTRA_RRECOMMENDS = "kernel-modules eee-acpi-scripts" 

GUI_MACHINE_CLASS = "bigscreen" 

 

IMAGE_ROOTFS_SIZE_ext3 = "2000000" 

IMAGE_FSTYPES ?= "ext3 cpio.gz" 

 

MACHINE_ESSENTIAL_EXTRA_RDEPENDS = "grub" 

PREFERRED_VERSION_grub ?= "1.98" 

 

SRCREV_machine_pn-linux-yocto_sugarbay ?= "41ec30ddc42912fec133a533b924e9c56ecda8f9" 

SRCREV_meta_pn-linux-yocto_sugarbay ?= "5a32d7fe3b817868ebb697d2d883d743903685ae" 27 

TARGET_ARCH = “x86_64” 

PREFERRED_PROVIDER_virtual/kernel = “linux-yocto” 

XSERVER ?= “xserver-xf86-dri-lite \ 

                         xf86-input-mouse \ 

                         xf86-input-keyboard \ 

                         xf86-video-intel” 



Kernel Customization 

• You can define a full kernel configuration set 
(defconfig) or use kernel configuration 
“fragments” 
 

• Add a kernel configuration fragment (.cfg) to 
your layer 

–These include standard Linux* Kconfig values and 
are inserted into the generated defconfig 

 

• Add a linux-yocto.bbappend recipe to your 
layer which includes your config file(s) 

28 



Adding E1000 Drivers 

• meta-talk/recipes-kernel/linux-
yocto/netdev.cfg: 

 

CONFIG_NETDEV_1000=y 

CONFIG_E1000E=y 

 

• meta-talk/recipes-kernel/linux-
yocto_git.bbappend: 

 

SRC_URI_append = “file://netdev.cfg” 

29 



Images Agenda 

 

• Exercise 3: Building an Image 
 

• Introduction to Images 
 

• Example Image: my-nas-image.bb 
 

• Booting an Image Under Emulation 
 

• Exercise 4: Booting Your Image 

30 



Exercise 3: Building an Image 

 

• cd ~/lab/poky 

 

• source oe-init-build-env 
• Sets up important environment variables 

 

• Set MACHINE=“qemux86” in build/conf/local.conf 

• Specifies that we‟re building an image for the qemux86 target 

 

• bitbake core-image-minimal 
• Builds a minimal Linux image for the qemux86 target 

 

31 



Images 

• Specify which packages to install 

–List individual package names and/or: 

–Set the IMAGE_FEATURES variable, which maps 
collections of packages (defined in task recipes) to 
named functionality, e.g, “apps-console-core 
package-management” 

• Define commands to be run on the 
generated rootfs (e.g, installing configuration 
files into /etc) 

• Built images are saved to 
build/tmp/deploy/images/ 

32 



Example Image – my-nas-image.bb 

IMAGE_FEATURES += "nfs-server apps-console-core package-management" 

 

inherit poky-image 

 

SRC_URI = "file://fstab \  # These files will be installed after the 

         file://exports”  # rootfs is generated, see below 

 

ROOTFS_POSTPROCESS_COMMAND += "setup_target_image ; " 

setup_target_image() { 

 # install configuration files 

 install -m 0644 ${WORKDIR}/fstab ${IMAGE_ROOTFS}/etc/fstab 

 install -m 0644 ${WORKDIR}/exports ${IMAGE_ROOTFS}/etc/exports 

 # etc etc 

} 

33 



Using Emulation 

• Yocto uses QEMU, which supports all major 
architectures: x86(-64), arm, mips, ppc 

• Simply set MACHINE=qemux86 in 
local.conf and build your image 

• runqemu script is used to boot the image 
with QEMU – it auto-detects as much as 
possible: 

 

runqemu qemux86 

34 



Exercise 4: Booting Your Image 

 

cd into your build/ directory, then run: 

 

runqemu qemux86 

 

 

Once the image has booted, log in as root 
(default password is empty, just hit Return) 

35 



Exercise 5: Changing Targets 

 

• The Tunnel Creek boards use the “fri2” MACHINE 
type as defined in the meta-intel layer 

 

• To build a core-image-minimal image which would 
boot on this board, simply edit your 
build/conf/local.conf file and set 
MACHINE=“fri2” 

 

• Then rebuild: bitbake core-image-minimal 

36 



Embedded Software Development 

• Embedded products are highly customized to 
provide special functions 

• Quickly roll out new applications that utilize unique 
hardware features 

• Embedded platforms needs 

– Run time supporting system 

– Application development 

• Product-focused toolchain and development platform 
are essential for embedded software development 

 

37 



Yocto Project* ADT 

Yocto Project* Application Development Toolkit 

• Setup target system development environment on 
the host machine based on sysroot concept 

– GNU cross-development toolchain of build, packaging, and 
debug 

– Development headers and libraries 

– Sysroot represents target device root file system 

• Optimized for use with Autotools 

– For autotool-enabled packages just pass host options to 
configure 

– For other projects should ensure the cross tools are used 

 

38 



Yocto Project* ADT (Cont.) 

Yocto Application Development Toolkit 

• Use hardware as development targets - Qemu with 
GL pass-through 

• User mode NFS support 
– Allow emulator and host access the file system at same time 

• Update packages on running systems and sysroot 

• ADT installer, Eclipse plug-in and user space tool 
suite 

 

 

39 

Allow software and hardware development to happen 
in parallel 



Yocto Project* 1.1 Upcoming Features 

 

• Multilib – images which support 32-bit and 
64-bit libraries installed at the same time 
– Use 64-bit support for specific applications, i.e. your actual 

product 

 

• x32 layer – 32-bit memory address space 
using the CPU in 64-bit mode 
– Allows full use of 64-bit registers in the CPU with 32-bit 

pointers 

40 



Yocto Project* 1.1 Upcoming Features 

 

• Enhanced layer tooling – to make layer 
creation and use easier and more robust 
 

• Updated software – GCC v4.6, newer eglibc, 
etc. 
 

• Image creator GUI – select the desired 
contents of the image, the target BSP and 
go. Easier to use than the command line and 
a text editor 

41 



Image Creator (Under Development) 

42 



Project Resources 

• The Yocto Project* is an open source project, and 
aims to deliver an open standard for the embedded 
Linux* community and industry 

• Development is done in the open through public 
mailing lists: openembedded-
core@lists.openembedded.org, 
poky@yoctoproject.org and yocto@yoctoproject.org  

• And public code repositories:  

• http://git.yoctoproject.org and 
http://git.openembedded.net 

• Bug reports and feature requests: 
http://bugzilla.yoctoproject.org 

43 



Please Fill out the Online  
Session Evaluation Form 

 
Be entered to win fabulous prizes 

everyday! 
  

Winners will be announced at 6pm (Day 1/2)  
and 3:30pm (Day 3)  

 
 
 

You will receive an email prior to 
the end of this session.  

44 



Scan Your Badge  
Connect with Intel 

 

• Speak with an Intel 
Representative: 

Have an Intel representative contact 
you by phone or email with 
information about Intelligent 
Connected Solutions! 

 

• Get Free “Tech Notes”:  

Receive electronic updates and 
newsletters that share product and 
technology highlights and keep you 
posted on upcoming events, 
seminars, webinars, and more! 

 
Intel Privacy Notice: http://www.intel.com/privacy  

 

45 

http://www.intel.com/privacy


Visit the  
Intelligent Connected 
Solutions Zone 
The intelligence in embedded. 



Q&A 

47 



Legal Disclaimer 
• INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR 

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. 
EXCEPT AS PROVIDED IN INTEL‟S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO 
LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE 
OF INTEL® PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, 
MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. INTEL 
PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS.  

• Intel may make changes to specifications and product descriptions at any time, without notice. 

• All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without 
notice. 

• Intel, processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause 
the product to deviate from published specifications. Current characterized errata are available on request. 

• Crown Bay, Menlow, Jasper Forest, Sugar Bay and other code names featured are used internally within Intel to identify 
products that are in development and not yet publicly announced for release.  Customers, licensees and other third parties 
are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any 
such use of Intel's internal code names is at the sole risk of the user  

• Software and workloads used in performance tests may have been optimized for performance only on Intel 
microprocessors.  Performance tests, such as SYSmark* and MobileMark*, are measured using specific computer systems, 
components, software, operations and functions.  Any change to any of those factors may cause the results to vary.  You 
should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, 
including the performance of that product when combined with other products. 

• Intel processor numbers are not a measure of performance. Processor numbers differentiate features within each 
processor family, not across different processor families. Go to: http://www.intel.com/products/processor_number 

• Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel 
representative to obtain Intel's current plan of record product roadmaps. 

• Intel, Atom, Core, VTune, Sponsors of Tomorrow and the Intel logo are trademarks of Intel Corporation in the United 
States and other countries.   

• *Other names and brands may be claimed as the property of others. 
• Copyright ©2011 Intel Corporation. 

48 



Risk Factors 
The above statements and any others in this document that refer to plans and expectations for the second quarter, the year and the future are forward-
looking statements that involve a number of risks and uncertainties. Words such as “anticipates,” “expects,” “intends,” “plans,” “believes,” “seeks,” 
“estimates,” “may,” “will,” “should,” and their variations identify forward-looking statements. Statements that refer to or are based on projections, uncertain 
events or assumptions also identify forward-looking statements. Many factors could affect Intel’s actual results, and variances from Intel’s current 
expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel 
presently considers the following to be the important factors that could cause actual results to differ materially from the company’s expectations. Demand 
could be different from Intel's expectations due to factors including changes in business and economic conditions, including supply constraints and other 
disruptions affecting customers; customer acceptance of Intel’s and competitors’ products; changes in customer order patterns including order 
cancellations; and changes in the level of inventory at customers. Potential disruptions in the high technology supply chain resulting from the recent 
disaster in Japan could cause customer demand to be different from Intel’s expectations. Intel operates in intensely competitive industries that are 
characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to 
forecast. Revenue and the gross margin percentage are affected by the timing of Intel product introductions and the demand for and market acceptance of 
Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel’s 
response to such actions; and Intel’s ability to respond quickly to technological developments and to incorporate new features into its products. The gross 
margin percentage could vary significantly from expectations based on capacity utilization; variations in inventory valuation, including variations related to 
the timing of qualifying products for sale; changes in revenue levels; product mix and pricing; the timing and execution of the manufacturing ramp and 
associated costs; start-up costs; excess or obsolete inventory; changes in unit costs; defects or disruptions in the supply of materials or resources; product 
manufacturing quality/yields; and impairments of long-lived assets, including manufacturing, assembly/test and intangible assets. Expenses, particularly 
certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's 
products and the level of revenue and profits. The majority of Intel’s non-marketable equity investment portfolio balance is concentrated in companies in 
the flash memory market segment, and declines in this market segment or changes in management’s plans with respect to Intel’s investments in this 
market segment could result in significant impairment charges, impacting restructuring charges as well as gains/losses on equity investments and interest 
and other. Intel's results could be affected by adverse economic, social, political and physical/infrastructure conditions in countries where Intel, its 
customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and 
fluctuations in currency exchange rates. Intel’s results could be affected by the timing of closing of acquisitions and divestitures. Intel's results could be 
affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters 
involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC 
reports. An unfavorable ruling could include monetary damages or an injunction prohibiting us from manufacturing or selling one or more products, 
precluding particular business practices, impacting Intel’s ability to design its products, or requiring other remedies such as compulsory licensing of 
intellectual property. A detailed discussion of these and other factors that could affect Intel’s results is included in Intel’s SEC filings, including the report on 
Form 10-Q for the quarter ended April 2, 2011. 

Rev. 5/9/11 

49 



Backup Slides 

50 



Requirements MeeGo* Operating 
System 

Yocto Project 

Target segments Segments: 
• IVI 
• Smart TV 
• Netbook 
• Tablets, Media Phones 
•  Smart Phone 

• Other embedded 
segments 

• Ideal for Machine to 
Machine (M2M), 
Industrial, Military-
Aerospace-Govt (MAG), 
Networking 

Application ecosystem 
• API compliance  
• At a core Linux level 
• Higher up in the stack, 

can have compliance at 
the segment level (such 
as an IVI compliance)  

 

This is the core idea behind 
MeeGo. Compliance 
adherence guarantees 
application reuse across 
MeeGo devices in different 
segments. 

Full customization (for 
designs which don‟t need 
an app ecosystem) save on 
footprint. Expect single app 
devices. 

Multi architecture support IA, ARM* IA, ARM, PowerPC, MIPS 

MeeGo is an OS Yocto Project is a set of 
build tools which create an 
OS 

MeeGo* and Yocto Project*  

51 


